1 解题思想
这道题是给了一些二维坐标,现在需要找出一个i,j,k的三元组数量,其中i-j和i-k的距离一致
方法比较简单暴力,i遍历所有点
每个i同时再次遍历所有点,记录下i-j的距离
这一轮中此时如果之前遍历过的点(k)有距离和i-j一样的,那么数量+2(j k可以互换)
2 原题
Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).
Example:
Input:
[[0,0],[1,0],[2,0]]
Output:
2
Explanation:
The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
3 AC解
public class Solution {
public int numberOfBoomerangs(int[][] points) {
int count = 0;
int n = points.length;
// 直接统计距离过来就可以
for (int i = 0; i < n; i++) {
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int j = 0; j < n; j++) {
int dis = (points[i][0] - points[j][0]) * (points[i][0] - points[j][0]) + (points[i][1] - points[j][1]) * (points[i][1] - points[j][1]);
if (!map.containsKey(dis)) {
map.put(dis, 0);
}
//两个位置可以j k可以颠倒
count += map.get(dis) * 2;
map.put(dis, map.get(dis) + 1);
}
}
return count;
}
}