机器学习——支持向量机

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。

简单地说,支持向量,就是离分隔超平面最近的那些点,支持向量机的学习就是要对最大化支持向量和分隔面的距离并找到优化求解办法。

分类器求解的优化问题:

输入数据给分类器会输出一个类别标签,这相当于一个类似于Sigmoid的函数在作用。下面将使用类似海维赛德阶跃函数(即单位阶跃函数)的函数对w'x+b作用得到f(w*x+b),其中当u<0时f (u)输出-1,反之则输出+1。
当计算数据点到分隔面的距离并确定分隔面的放置位置时,间隔通过1abel * (wx+b)°来
计算,这时就能体现出-1和+1类的好处了。如果数据点处于正方向(即+1类)并且离分隔超平
面很远的位置时,w'x+b会是-一个很大的正数,同时1abel* (w'x+b)也会是- -个很大的正数。而
如果数据点处于负方向(-1类)并且离分隔超平面很远的位置时,此时由于类别标签为-1,则
label★(w"x+b) 仍然是-一个很大的正数。
现在的目标就是找出分类器定义中的w和b。为此,我们必须找到具有最小间隔的数据点,而
这些数据点也就是前面提到的支持向量。一旦找到具有最小间隔的数据点,我们就需要对该间隔
最大化。这就可以写作:

在上述优化问题中,给定了一些约束条件然后求最优值,因此该问题是-一个带约束条件的优
化问题。这里的约束条件就是1abe1* (w"x+b)≥1.0。 对于这类优化问题,有-个非常著名的求
解方法,即拉格朗日乘子法。通过引人拉格朗日乘子,我们就可以基于约束条件来表述原来的问
题。由于这里的约束条件都是基于数据点的,因此我们就可以将超平面写成数据点的形式。于是,
优化目标函数最后可以写成:

SMO算法:

SMO表示序列最小优化,目标是求出一系列的alpha和b,一旦求出了这些alpha,就很容易求解出权重向量w

def smoPK(dataMatIn, classLabels, C, toler, maxIter):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas

核函数:

某个特征空间到另一个特征空间的映射

径向基函数是SVM中常用的一个核函数。径向基函数是一个采用向量作为 自变量的函数,能
够基于向量距离运算输出一个标量。这个距离可以是从<0,0>向量或者其他向量开始计算的距离。
接下来,我们将会使用到径向基函数的高斯版本,其具体公式为: 

 其中,σ是用户定义的用于确定到达率( reach)或者说函数值跌落到0的速度参数。

def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]=='lin': K = X * A.T   #linear kernel
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
    else: raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K

基于SVM的手写识别:


def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m) 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值