YOLO v5跑通

本文介绍了如何使用YOLOv5实现目标检测,特别是在COCO128数据集上的应用。提到如何调整命令行参数如batch_size和epochs以解决内存问题,并指导读者查看训练过程中验证集的标记结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO v5 实现目标检测(参考数据集&自制数据集) - 知乎 (zhihu.com)

运行detect.py:

数据集:

coco128数据集是COCO数据集的前128张图片,通常用作小型的教程数据集,这里面的128张图片即用作训练也用作验证。

运行train.py:

运行时 --img 320 --batch-size 16

默认数值 batch_size=16, imgsz=640会报错outofmemory。

 python train.py --img 320 --batch-size 16 --epochs 5 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --weights ./yolov5s.pt

根据cmd提示在runs/train/exp中查看验证集图片标记结果。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值