Python中的科学计算库numpy的学习_numpy中常用的方法

##本博客将分为如下模块分别进行叙述:
-array数组
-数值计算
-排序操作
-数组形状(维度)
-数组的生成
-四则运算
-随机模块
-文件读写
###一、array数组
Note:
1.numpy中的ndarray类型要求其内部(数组/矩阵)元素类型(dtype)一致,若不一致则自动向下转化
2.ndarray2 = ndarray 不等于 ndarray2 = ndarray.copy()
3.bool类型ndarray当做索引
###二、数组内部(即数组元素之间)的数值计算
1.和

li_array = np.array([[1,2,3],
                     [4,5,6]])
np.sum(li_array, axis=0)
# li_array.sum(axis=0)
2.积
li_array.prod(axis=0)
3.求最大最小
np.max(ndarray=None, axis=None)
np.min(ndarray=None, axis=None)
4.返回索引
np.argmax(ndarray=None, axis=None)
np.argmin(ndarray=None, axis=None)
5.均值
np.max(ndarray=None, axis=None)
6.标准差
np.std(ndarray=None, axis=None)
7.方差
np.var(ndarray=None, axis=None)
8.限制数组元素的大小范围
np.clip(ndarray=None, start=None, end=None)
9.四舍五入
np.round(ndarray=None, decimals=None)  # decimals参数为指定精度,即小数点后几位
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值