使用chatgpt api快速分析pdf

需求背景

搞材料的兄弟经常要分析pdf,然后看到国外有产品是专门调用chatpdf来分析pdf的,所以就来问我能不能帮他也做一个出来。正好我有chatgpt的api,所以就研究了一下这玩意怎么弄。

需求分析

由于chatgpt是按字符算钱的,所以如果把整个pdf文本全部塞进去,虽然效果是好了,但是钱花的巨快。测试的时候不小心传了个86页的pdf进去,好家伙,直接余额变负值了,一下子花了6刀多。。。。所以我们只能先对pdf做预处理,主要使用了langchain包加载和生成向量库

引入依赖

from langchain.document_loaders import PyPDFLoader
from langchain.indexes.vectorstore import VectorstoreIndexCreator
from langchain.vectorstores.chroma import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.indexes.vectorstore import VectorStoreIndexWrapper

生成向量

# https://chatpdf4cn.com/
def load_pdf_and_save_to_index(file_path, index_name):
    loader = PyPDFLoader(file_path)
    index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory":get_index_path(index_name)}).from_loaders({loader})
    print('save')

    index.vectorstore.persist()

加载向量库

def load_index(index_name):
    index_path=get_index_path(index_name)
    embedding = OpenAIEmbeddings()
    vectordb = Chroma(
    persist_directory=index_path,
    embedding_function=embedding
 )
    return VectorStoreIndexWrapper(vectorstore=vectordb)

最后调用chatgpt访问

load_pdf_and_save_to_index(file_path, index_name)
index = load_index(index_name)

ans = index.query("文章中提到的两种磁化模式有什么区别?",chain_type_kwargs={}) #RetrievalQAWithSourcesChain

print(ans)

附上完整项目试用地址
chatpdf4cn
调用chatgpt接口还是蛮贵的,所以限制了试用次数,如果有需要的可以联系我开放限制,希望能反馈一些使用意见。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值