题目链接:AtCoder Beginner Contest 367
总结:发挥很一般,A一直wa。开场有点事,导致D也没debug出来。
A. Shout Everyday
tag:模拟
Solution:注意
B
>
C
B > C
B>C与
B
<
C
B < C
B<C的不同情况即可。
void solve(){
int a, b, c;
cin >> a >> b >> c;
if (c > b){
if (a >= c || a < b){
cout << "Yes\n";
}
else{
cout << "No\n";
}
}
else{
if (a >= c && a < b){
cout << "Yes\n";
}
else{
cout << "No\n";
}
}
}
B. Shout Everyday
tag:模拟
Solution:从后往前去掉对于的
0
0
0,然后看是否需要去掉.
。
void solve(){
string s;
cin >> s;
int i;
for (i = s.size() - 1; i > 0; i --){
if (s[i] != '0')
break;
}
if (s[i] == '.'){
for (int j = 0; j < i; j ++)
cout << s[j];
}
else{
for (int j = 0; j <= i; j ++)
cout << s[j];
}
}
C. Enumerate Sequences
tag:dfs
Solution:根据题意模拟即可
void solve(){
int n, k;
cin >> n >> k;
vector<int> a(n + 10);
for (int i = 1; i <= n; i ++)
cin >> a[i];
function<void(int, string)> dfs = [&](int s, string ans) {
if (s == n){
int sum = 0;
for (int i = 0; i < n; i ++)
sum += ans[i] - '0';
if (sum % k == 0){
for (int i = 0; i < n; i ++){
cout << ans[i] << " ";
}
cout << endl;
}
}
else{
for (int i = 1; i <= a[s + 1]; i ++){
dfs(s + 1, ans + char(i + '0'));
}
}
};
dfs(0, "");
}
D. Pedometer
tag:前缀和哈希 + 环形
Solution:很典的前缀和哈希。但是需要处理一个环形,同时注意值的计算,
i
−
>
i
+
1
i -> i + 1
i−>i+1的值为
a
i
a_i
ai。
- 第一轮循环处理:s < t的情况
- 第二轮循环处理:s > t的情况(注意这里不能重复计算s < t的方案数)
Competing:没注意到从 i − > i + 1 i -> i + 1 i−>i+1是 a i a_i ai,而不是$a_i + a_{i + 1}。
void solve(){
cin >> n >> m;
vector<int> a(n + 10);
for (int i = 1; i <= n; i ++)
cin >> a[i];
int ans = 0;
map<int, int> mp;
int t = 0;
for (int i = 1; i <= n; i ++){ // 第一次处理s < t的情况
// 以i为结尾
ans += mp[t];
mp[t] ++;
t = (t + a[i]) % m;
}
int res = 0;
for (int i = 1; i < n; i ++){ // 注意这里小于n
mp[res % m] --;
ans += mp[t % m];
res = (res + a[i]) % m;
t = (t + a[i]) % m; // 这里mp[t]不需要再加了,否则会重复计算s < t的方案数
}
cout << ans;
}
E. Permute K times
tag:倍增
Description:给定两个长度为
n
n
n的数组
x
,
a
x, a
x,a,需要执行
k
k
k次操作,每次操作:
- 先令所有 b i = a x i b_i = a_{x_i} bi=axi, 然后令 a = b a = b a=b。
- 求最后的 a a a数组。
-
1
<
=
n
<
=
2
∗
1
0
5
,
0
<
=
k
<
=
1
0
18
1 <= n <= 2 * 10^5, 0 <= k <= 10^{18}
1<=n<=2∗105,0<=k<=1018。
Solution:注意到 x x x数组是不变的,意味着第 i i i个位置的变化是固定的:$i -> x_i -> x_{x_i}。 - 我们需要知道第 i i i个数变换 k k k次之后所在的位置,但是 k k k的范围很大,考虑预处理。
- 使用倍增预处理: f [ i ] [ j ] f[i][j] f[i][j]表示第 i i i个位置的数,执行 2 j 2^j 2j次操作后所在的位置。
- f [ i ] [ j ] = f [ f [ i ] [ j − 1 ] ] [ j − 1 ] f[i][j] = f[f[i][j - 1]][j - 1] f[i][j]=f[f[i][j−1]][j−1]
int f[N][65];
void solve(){
cin >> n >> k;
vector<int> x(n + 1), a(n + 1);
for (int i = 1; i <= n; i ++)
cin >> x[i];
for (int i = 1; i <= n; i ++)
cin >> a[i];
for (int j = 0; j <= 64; j ++){
for (int i = 1; i <= n; i ++){
if (!j){ // 第i个元素执行2^j操作后的位置
f[i][j] = x[i];
}
else{
f[i][j] = f[f[i][j - 1]][j - 1];
}
}
}
vector<int> t;
for (int i = 0; i < 64; i ++){
if ((k >> i) & 1){
t.push_back(i);
}
}
for (int i = 1; i <= n; i ++){
int tt = i;
for (int j : t){
tt = f[tt][j];
}
cout << a[tt] << " ";
}
}
F. Rearrange Query
tag:哈希
Description:给定两个长度为
n
n
n的数组
a
,
b
a, b
a,b,执行
Q
Q
Q次查询,每次查询给定:
- l 1 , r 1 , l 2 , r 2 l1, r1, l2, r2 l1,r1,l2,r2,询问 a [ l 1 , r 1 ] , b [ l 2 , r 2 ] a[l1, r1], b[l2, r2] a[l1,r1],b[l2,r2]区间内的数,重新排序后是否能够匹配。
-
1
<
=
n
,
Q
<
=
2
∗
1
0
5
,
1
<
=
a
i
,
b
i
<
=
n
1 <= n, Q <= 2 * 10^5, 1 <= a_i, b_i <= n
1<=n,Q<=2∗105,1<=ai,bi<=n。
Solution:我们需要统计区间内每个数出现的次数,但是每次查询暴力查询显然会超时。 - 类似字符串哈希,我们将每个数哈希为一个 N N N位 M M M进制的数。
void solve(){
cin >> n >> k;
vector<ull> p(n + 10);
p[0] = 1;
for (int i = 1; i <= n; i ++)
p[i] = p[i - 1] * 1331;
vector<ull> ha(n + 10), hb(n + 10);
for (int i = 1; i <= n; i ++){
int x;
cin >> x;
ha[i] = ha[i - 1] + p[x];
}
for (int i = 1; i <= n; i ++){
int x;
cin >> x;
hb[i] = hb[i - 1] + p[x];
}
function<bool(int, int, int, int)> query = [&](int l1, int r1, int l2, int r2) {
ull a = ha[r1] - ha[l1 - 1];
ull b = hb[r2] - hb[l2 - 1];
return a == b;
};
while (k --){
int l1, r1, l2, r2;
cin >> l1 >> r1 >> l2 >> r2;
if (query(l1, r1, l2, r2)){
cout << "Yes\n";
}
else{
cout << "No\n";
}
}
}