K-means算法

K-means算法是一种广泛应用的聚类算法,基于划分方法,寻找数据中的自然聚类中心,通过迭代优化簇内对象的均方误差。尽管算法简单高效,但对初始中心点选择敏感,适用于凸形、密集的簇。鸢尾花数据集测试展示了其聚类效果。该算法在大数据集上表现可伸缩,但在非凸形状簇和噪声数据上效果不佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      聚类是在给定的数据集合中寻找同类的数据子集合,每一个子集合形成一个类簇,同类簇中的数据具有更大的相似性。聚类算法大体上可分为基于划分的方法、基于层次的方法、基于密度的方法、基于网格的方法以及基于模型的方法。

      术语“k-means”最早是由James MacQueen在1967年提出的,这一观点可以追溯到1957年 Hugo Steinhaus所提出的想法。1957年,斯图亚特·劳埃德最先提出这一标准算法,当初是作为一门应用于脉码调制的技术,直到1982年,这一算法才在贝尔实验室被正式提出。1965年, E.W.Forgy发表了一个本质上是相同的方法,1975年和1979年,Hartigan和Wong分别提出了一个更高效的版本。

      目前k-means算法是一种得到最广泛使用的基于划分的聚类算法,把n个对象分为k个簇,以使簇内具有较高的相似度。相似度的计算根据一个簇中对象的平均值来进行。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心

      算法首先随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。

      它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。假设有k个群组Si, i=1,2,…,k。μi是群组Si内所有元素xj的重心,或叫中心点。

       K值的选择应该在2和√n之间,n为数据个数。

算法的性能分析:

1)优点
      1、k-平均算法是解决聚类问题的一种经典算法,算法简单、快速
      2、对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k远小于n。这个算法经常以局部最优结束。
      3、算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,而簇与簇之间区别明显时,它的聚类效果很好。

2)缺点
      1、k-means只有在簇的平均值被定义的情况下才能使用,不适用于某些应用,如涉及有分类属性的数据不适用。
      2、要求用户必须事先给出要生成的簇的数目k。
      3、对初值敏感,对于不同的初始值,可能会导致不同的聚类结果。
      4、不适合于发现非凸面形状的簇,或者大小差别很大的簇。
      5、对于”噪声”和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。

k-means 算法基本步骤:
      (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;
      (2) 计算每个对象与这些中心对象的距离;并根据最小距离对相应对象进行划分;
      (3)重新计算每个中心对象;
      (4)重复(2)、(3)布直至满足准则收敛函数。

鸢尾花数据集测试实例:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<string.h>
#include<math.h>

//鸢尾花数据集的定义
typedef struct
{
    float x ;   //花萼长度
    float y ;   //花萼宽度
    float i ;   //花瓣长度
    float j ;   //花瓣宽度
    int type ;   //属种
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值