浅谈K-means聚类算法

K-means算法起源于1967年,是一种通过计算数据点与质心距离进行聚类的方法。该算法包括选择K值,随机初始化质心,计算与质心距离并重新分配数据点等步骤。K-means在文档分类、物品传输优化、犯罪地点识别等领域有广泛应用。例如,用于客户分类,可以帮助公司根据客户行为细分市场;在保险欺诈检测中,能辅助识别潜在欺诈行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-means算法的起源

1967年,James MacQueen在他的论文《用于多变量观测分类和分析的一些方法》中首次提出 “K-means”这一术语。1957年,贝尔实验室也将标准算法用于脉冲编码调制技术。1965年,E.W. Forgy发表了本质上相同的算法——Lloyd-Forgy算法,所以这一算法有时也被称为Lloyd-Forgy算法。更高效的版本则被Hartigan and Wong提出。

K-means算法的原理

K-Means聚类算法是聚类算法之一,其中K表示类别的数量,也就是说,我们想要将数据分成几个类别,Means表示均值。K值决定了初始质心(通常是随机选择的中心)的数量。K值是几,必须有几个质心。 简而言之,K-Means聚类算法是一种通过均值聚类数据点的算法。

K-means算法的过程

1、首先输入K的值,将数据集分为K个类别。
2、从这组数据中随机选择K个数据点作为初始大哥(初始质心),其它数据点都作为小弟。
3、对数据集中每一个小弟,计算与每一个大哥的距离,离哪个大哥距离最近,就分配给哪个大哥。
4、每一个大哥手下都聚集了一帮小弟,这时候召开黑帮会议,推选出新的大哥(新的质心)。
5、如果新大哥和老大哥之间的距离很小或为0,说明新任大哥靠谱,选举结束(可以认为我们进行的聚类已经达到期望的结果,算法终止)。
6、如果新大哥和老大哥之间的距离很大,需要重新选举新大哥,分配小弟(重复3~5的步骤)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值