设计一种算法,打印 N 皇后在 N × N 棋盘上的各种摆法,其中每个皇后都不同行、不同列,也不在对角线上。这里的“对角线”指的是所有的对角线,不只是平分整个棋盘的那两条对角线。
注意:本题相对原题做了扩展
实例:
输入:4
输出:[[".Q…","…Q",“Q…”,"…Q."],["…Q.",“Q…”,"…Q",".Q…"]]
解释: 4 皇后问题存在如下两个不同的解法。
[
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
class Solution {
public List<List<String>> solveNQueens(int n) {
if (n < 1) {
return new ArrayList<>();
}
int[] piece = new int[n];// piece[1] = 2 表示第1行第2列放了皇后
List<List<String>> resList = new ArrayList<>();
process(0, piece, n,resList);
return resList;
}
private static int process(int i, int[] piece, int n, List<List<String>> resList) {
if (i == n) {//表示已经放完了且这种放法符合要求
//放到容器中
List<String> list = new ArrayList<>();
for (int k = 0; k < n; k++) {
StringBuilder sb = new StringBuilder();
for (int l = 0; l < n; l++) {
if (l == piece[k]) {
sb.append("Q");
} else {
sb.append(".");
}
}
list.add(sb.toString());
}
resList.add(list);
}
int res = 0;
for (int j = 0; j < n; j++) {//枚举当前行每个位置
if (check(i, j, piece)) {//如果该位置可以放,就放下,然后递归去放下一行
piece[i] = j;
res += process(i+1, piece, n,resList);
}
}
return res;
}
//检查 i,j位置是否符合N皇后的游戏要求
private static boolean check(int i, int j, int[] piece) {
for (int k = 0; k < i; k++) {
if (piece[k] == j || Math.abs(i - k) == Math.abs(j - piece[k])) {
return false;
}
}
return true;
}
}