【20240606】欧式空间 正交变换和正交矩阵

latex练习中……
目前还在施工。

8.4 正交变换和正交矩阵

ϕ \phi ϕ φ \varphi φ α \alpha α β \beta β ∈ \in ψ \psi ψ cos ⁡ \cos cos sin ⁡ \sin sin

定义8.4.1

设V是n维欧氏空间, φ \varphi φ V V V的线性变换. 如果 φ \varphi φ保持内积, 即对任意 α , β ∈ V \alpha,\beta \in V α,βV总成立
( ϕ ( α , β ) , ϕ ( β ) ) = ( α , β ) (\phi(\alpha,\beta),\phi(\beta))=(\alpha,\beta) (ϕ(α,β),ϕ(β))=(α,β)
则称 φ \varphi φ是正交变换.

定理8.4.1

φ \varphi φ是n 维欧氏空间V 的线性变换, 则下列条件等价:
(1) φ \varphi φ 是正交变换;
(2) φ \varphi φ 保持长度不变;
(3) φ \varphi φ 将V 的标准正交基变成标准正交基;
(4) φ \varphi φ 在V 的标准正交基下矩阵是正交阵.

注1

n 阶正交阵可视为n维欧氏空间V 中两个标准正交基的过渡矩阵.

注2

n阶正交阵还可视为n 维欧氏空间V 的正交变换在V 的标准正交基下的矩阵.

注3

若 是正交变换, 则
(1) 可逆, 且 也是正交变换;
(2) 为正交变换.

定理8.4.2

设n阶实矩阵A为正交阵, 则(1) A 的行列式为(2) A 的在 上的特征值的长度为1.

引理8.4.1

设A为正交阵, (b≠0)为A的一个复特征值, 为对应的特征向量, 其中 , 则 且l注:因 , 故可设cossin(,),(,)sincosAabAbaaibXi||||.,221,ab1cos,sin.abcossin(,)(,).

定理8.4.3 ϕ \phi ϕ φ \varphi φ α \alpha α β \beta β ∈ \in ψ \psi ψ cos ⁡ \cos cos sin ⁡ \sin sin

设A为正交阵, 则存在正交阵Q, 使 其中1111cossincossin{,…,}.sincossincosllrslldiagEE1111cossincossin{,…,’

d i a g ( ( cos ⁡ θ 1 − sin ⁡ θ 1 sin ⁡ θ 1 cos ⁡ θ 1 ) ) diag( \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{pmatrix} ) diag((cosθ1sinθ1sinθ1cosθ1))

定理8.4.3’

设 是n 维欧氏空间V 的正交变换, 则存在一个标准正交基, 使得 在此基下的矩阵是

8.1内积和欧氏空间

定义8.1.1

设V是 R \mathbb{R} R上线性空间,映射(-,-): 称为内积, 如果对任意 有\alpha \beta \gamma
(1) ( α , β ) = ( β , α ) (\alpha,\beta)=(\beta,\alpha) (α,β)=(β,α)
(2) = = =
(3) = = =
(4) 且等号成立当且仅当 .则称V为关于内积( - , - )的Euclid(欧几里得)空间,简称欧氏空间

注1:

欧氏空间V 的维数可以是有限维的,也可以是无限维的.

注2:

设U是欧氏空间V 的子空间,则易见U关于V 的内积也构成欧氏空间,称为欧氏子空间.

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值