深度学习基础路线

一 概率统计

第一章  概率统计上篇 
1.1  事件
1.2  随机变量
1.3  概率与条件概率
1.4  贝叶斯定理
1.5  朴素贝叶斯
1.6  期望、方差、协方差
1.7  最大似然、最大后验
案例:垃圾邮件过滤

第二章  概率统计中篇
2.1  常见分布总结
2.2  最大似然与贝叶斯的关系
2.3  熵与互信息
案例:最大似然估计


第三章  概率统计下篇
3.1  以 GMM 为例的统计建模
3.2  EM 算法 
案例:GMM 实践

二 优化

第一章  优化迭代法统一论
1.1  泰勒展式
1.2  函数极值分析
1.3  梯度下降法
1.4  随机梯度下降法
1.5  牛顿法
1.6  拟牛顿法 
1.7  线搜索 
1.8  线性回归
案例:梯度下降法求解函数极值

第二章  深度学习反向传播
2.1  神经网络训练
案例:反向传播算法实践

第三章  凸优化基础
3.1  约束优化问题
3.2  凸集
3.3  凸函数
3.4  凸优化问题 
案例:凸优化问题转化


第四章  凸优化进阶之对偶理论
4.1  对偶问题
4.2  强对偶
4.3  弱对偶
4.4  maxmin 与 minmax
4.5  鞍点解释
4.6  KKT 条件 
案例: 对偶理论应用


第五章  SVM
5.1  间隔与支撑向量
5.2  对偶问题
5.3  SMO
5.4  核函数 
案例: SVM 对实际数据集进行分类

三数据降维

第一章  矩阵分析上篇 
1.1  矩阵与张量
1.2  可逆矩阵
1.3  线性相关
1.4  子空间
1.5  范数
1.6 特殊矩阵和特征分解
案例:PCA 数据降维


第二章  矩阵分析下篇 
2.1  SVD
2.2  SVD 与特征分解关系
2.3  图像压缩
2.4  伪逆
2.5  迹与行列式
案例:SVD 对图像进行压缩


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值