一 概率统计
第一章 概率统计上篇
1.1 事件
1.2 随机变量
1.3 概率与条件概率
1.4 贝叶斯定理
1.5 朴素贝叶斯
1.6 期望、方差、协方差
1.7 最大似然、最大后验
案例:垃圾邮件过滤
第二章 概率统计中篇
2.1 常见分布总结
2.2 最大似然与贝叶斯的关系
2.3 熵与互信息
案例:最大似然估计
第三章 概率统计下篇
3.1 以 GMM 为例的统计建模
3.2 EM 算法
案例:GMM 实践
二 优化
第一章 优化迭代法统一论
1.1 泰勒展式
1.2 函数极值分析
1.3 梯度下降法
1.4 随机梯度下降法
1.5 牛顿法
1.6 拟牛顿法
1.7 线搜索
1.8 线性回归
案例:梯度下降法求解函数极值
第二章 深度学习反向传播
2.1 神经网络训练
案例:反向传播算法实践
第三章 凸优化基础
3.1 约束优化问题
3.2 凸集
3.3 凸函数
3.4 凸优化问题
案例:凸优化问题转化
第四章 凸优化进阶之对偶理论
4.1 对偶问题
4.2 强对偶
4.3 弱对偶
4.4 maxmin 与 minmax
4.5 鞍点解释
4.6 KKT 条件
案例: 对偶理论应用
第五章 SVM
5.1 间隔与支撑向量
5.2 对偶问题
5.3 SMO
5.4 核函数
案例: SVM 对实际数据集进行分类
三数据降维
第一章 矩阵分析上篇
1.1 矩阵与张量
1.2 可逆矩阵
1.3 线性相关
1.4 子空间
1.5 范数
1.6 特殊矩阵和特征分解
案例:PCA 数据降维
第二章 矩阵分析下篇
2.1 SVD
2.2 SVD 与特征分解关系
2.3 图像压缩
2.4 伪逆
2.5 迹与行列式
案例:SVD 对图像进行压缩