一. 分治法
1. 归并排序
分而治之——分
void mergeSort(int x[], int l, int r)
{
if (l < r)
{
int mid = (l + r) / 2;
mergeSort(x, l, mid);
mergeSort(x, mid + 1, r);
merge(x, l, mid, r);
}
}
分而治之——治
以最后一步为对象,思考“治”的算法
//可以先将正确顺序存于Temp数组,最后再更新原数组
void SortClass::merge(vector<int>& a, int L, int M, int R)
{
vector<int> temp(R - L + 1);
int i = 0;
int p1 = L;
int p2 = M + 1;
while (p1 <= M && p2 <= R)
{
temp[i++] = a[p1] < a[p2] ? a[p1++] : a[p2++];
}
while (p1 <= M)
{
temp[i++] = a[p1++];
}
while (p2 <= R)
{
temp[i++] = a[p2++];
}
for (unsigned int i = 0; i < temp.size(); i++)
{
a[L + i] = temp[i];
}
}
//----------------------------------------------------------//
//也可以将L R部分先拷贝出来,再直接按正确顺序写回原数组
//分三部分处理
void merge(int x[], int l, int mid, int r)
{
int L[50]{}, R[50]{};
for (int i = 0; i < mid - l + 1; i++)
{
L[i] = x[l + i];
}
for (int j = 0; j < r - mid; j++)
{
R[j] = x[mid + 1 + j];
}
int i = 0, j = 0, k = 0;
while (i < mid - l + 1 && j < r - mid)
{
x[l + k++] = L[i] < R[j] ? L[i++] : R[j++];
}
while (i < mid - l + 1)
{
x[l + k++] = L[i++];
}
while (j < r - mid)
{
x[l + k++] = R[j++];
}
}
//也可直接一步到底
void merge(int x[], int l, int mid, int r)
{
int L[50]{}, R[50]{};
for (int i = 0; i < mid - l + 1; i++)
{
L[i] = x[l + i];
}
for (int j = 0; j < r - mid; j++)
{
R[j] = x[mid + 1 + j];
}
L[mid - l + 1] = INT_MAX;//从小到大排则将其有效部分的下一位置为最大
R[r - mid] = INT_MAX;
int i = 0, j = 0;
for (int k = l; k < r + 1; k++)
{
x[k] = L[i] < R[j] ? L[i++] : R[j++];
}
}
最后算法整体为
void merge(int x[], int l, int mid, int r)
{
int L[50]{}, R[50]{};
for (int i = 0; i < mid - l + 1; i++)
{
L[i] = x[l + i];
}
for (int j = 0; j < r - mid; j++)
{
R[j] = x[mid + 1 + j];
}
L[mid - l + 1] = INT_MAX;//从小到大排
R[r - mid] = INT_MAX;
int i = 0, j = 0;
for (int k = l; k < r + 1; k++)
{
x[k] = L[i] < R[j] ? L[i++] : R[j++];//从小到大排
}
}
void mergeSort(int x[], int l, int r)
{
if (l < r)
{
int mid = (l + r) / 2;
mergeSort(x, l, mid);
mergeSort(x, mid + 1, r);
merge(x, l, mid, r);
}
}
另外:
时间复杂度:
归并排序把集合进行层层拆半分组。如果集合长度为n,那么拆半的层数就是logn,每一层进行归并操作的运算量是n。所以,归并排序的时间复杂度等于每一层的运算量×层级数,即O(nlogn)。
空间复杂度:
归并排序是需要用到额外空间的,但是每次归并所创建的额外空间都会随着方法结束而释放,因此单次归并操作开辟的最大空间是n。所以,归并排序的空间复杂度是O(n)。
算法稳定性:
归并排序是稳定的排序算法。temp[len++]=arr[i_start]<arr[j_start]?arr[i_start++]:arr[j_start++];,这行代码可以保证当左右两部分的值相等的时候,先复制左边的值,这样可以保证值相等的时候两个元素的相对位置不变。
2. 最大子段和
给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-20,11,-4,13,-5,-2)时,最大子段和为20。
暴力解法:双重循环
int maxSum2(int x[], int l, int r)
{
int tempMax, maxNum = 0, temp;
for (int i = l; i <= r; i++)
{
temp = 0;
tempMax = 0;
for (int j = i; j < r; j++)
{
temp += x[j];
tempMax = max(tempMax, temp);
}
maxNum = max(maxNum, tempMax);
}
return maxNum;
}
如果将所给的序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有三种情况:
(1) a[1:n]的最大子段和与a[1:n/2]的最大子段和相同
(2) a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同
(3) a[1:n]的最大子段和为a[i]+…+a[j],并且1<=i<=n/2,n/2+1<=j<=n。
对于(1)和(2)两种情况可递归求得,但是对于情况(3),容易看出a[n/2],a[n/2+1]在最大子段中。因此,我们可以在a[1:n/2]中计算出s1=max(a[n/2]+a[n/2-1]+…+a[i]),0<=i<=n/2,并在a[n/2+1:n]中计算出s2= max(a[n/2+1]+a[n/2+2]+…+a[i]),n/2+1<=i<=n。则s1+s2为出现情况(3)的最大子段和。
分治法
int maxLR(int x[], int l, int r)
{
int mid = (l + r) / 2;
int sumL = 0, sumR = 0, maxL = 0, maxR = 0;
for (int i = mid; i >= l; i--)
{
sumL += x[i];
maxL = max(sumL, maxL);
}
for (int i = mid + 1; i <= r; i++)
{
sumR += x[i];
maxR = max(sumR, maxR);
}
return maxL + maxR;
}
int maxSum(int x[], int l, int r)
{
if (l == r) return x[l] >= 0 ? x[l] : 0;
int mid = (l + r) / 2;
int L = maxSum(x, l, mid);
int R = maxSum(x, mid + 1, r);
int LR = maxLR(x, l, r);
int max = L > R ? L : R;
return max = LR > max ? LR : max;
}