算法-分治法-0/1背包问题

每个物品我们都有两种选择,一个是放入,一个是不放入。假设f[i][c]表示第i次选择后,容量的为c的背包的价值。

那么对于选择第i个的物品后其价值的第公式是:

1、表示f[i-1][j]表示第i-1次选择后,容量为j的包的价值。

f[i][j]=f[i-1][j]

2、表示第i-1次选择后,容量为j-w[i]的价值,因为放入所以背包容量减少了,价值增加了 。

f[i][j]=f[i-1][j-w[i]]+v[i]

 

#include <iostream>
using namespace std;
#define MAX  100


int max(int a,int b)
{
	return a>b?a:b;
}

int main()
{
	int n, c;  //背包容量和个数
	int f[MAX][MAX]={0}; //f[i][c]第i次选择后,所选物品放入一个容量为c的背包获得的最大价值
	int w[MAX], v[MAX];  //重量价值
	cout<<"输入物品个数和背包容量:"<<endl;
	cin>>n>>c;
	cout<<"输入物品重量和价值:"<<endl;
	for(int i = 1; i <= n; +
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值