切水。
法一:用平衡树维护,nlogn,网上大多数题解都是这个
法二:权值线段树,我写的是这个,nlog1e9
法三:离线+离散化+权值线段树,没什么好说的,nlogn
法四:离线排序+链表,从后往前扫一遍即可,nlogn+n,常数比较小
#include<iostream>
#include<cstdio>
#define N 1000005
#define inf 200000000
using namespace std;
int n,x,Ans,Rt,cnt;
int sz[N],ls[N],rs[N];
void mdy(int &k,int l,int r,int x)
{
if (!k) k=++cnt;sz[k]++;
if (l==r) return;
int mid=l+r>>1;
if (mid>=x) mdy(ls[k],l,mid,x);
else mdy(rs[k],mid+1,r,x);
}
int qry(int &k,int l,int r,int x)
{
if (l==r) return sz[k];
int mid=l+r>>1;
if (mid>=x) return qry(ls[k],l,mid,x);
return sz[ls[k]]+qry(rs[k],mid+1,r,x);
}
int fd(int &k,int l,int r,int x)
{
if (l==r) return l;
int mid=l+r>>1;
if (sz[ls[k]]>=x) return fd(ls[k],l,mid,x);
return fd(rs[k],mid+1,r,x-sz[ls[k]]);
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&x);
int tmp=qry(Rt,-inf,inf,x),t1=2*inf,t2=2*inf;
if (i==1) t1=x;
if (tmp!=0) t1=x-fd(Rt,-inf,inf,tmp);
if (tmp!=i-1) t2=fd(Rt,-inf,inf,tmp+1)-x;
Ans+=min(t1,t2);
mdy(Rt,-inf,inf,x);
}
printf("%d\n",Ans);
}