字典树概要
字典树,即Trie树,又称单词查找树或键树,是一种数据结构。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。
优点在于:最大限度的减少无谓的字符串比较,查找效率比哈希表高。
基本性质:
1.节点本身不存完整单词;
2.从根节点到某一节点路径上经过的字符链接起来,为该节点的字符串;
3.每个节点的所有子节点路径代表字符都不相同。
核心思想
Trie树的核心思想就是空间换时间
利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的
题目描述
实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作。
示例:
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 true
trie.search("app"); // 返回 false
trie.startsWith("app"); // 返回 true
trie.insert("app");
trie.search("app"); // 返回 true
说明:
你可以假设所有的输入都是由小写字母 a-z 构成的。
保证所有输入均为非空字符串。
class TrieNode {
private TrieNode[] links;
private final int R = 26;
private boolean isEnd;
public TrieNode() {
links = new TrieNode[R];
}
public boolean containskey(char ch) {
return links[ch - 'a'] != null;
}
public TrieNode get(char ch) {
return links[ch - 'a'];
}
public void put(char ch, TrieNode node) {
links[ch - 'a'] = node;
}
public void setEnd() {
isEnd = true;
}
public boolean isEnd() {
return isEnd;
}
}
public class Trie208 {
private TrieNode root;
public Trie208() {
root = new TrieNode();
}
public void insert(String word) {
TrieNode node = root;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
if (!node.containskey(ch)) {
node.put(ch, new TrieNode());
}
node = node.get(ch);
}
node.setEnd();
}
public boolean search(String word) {
TrieNode node = searchprefix(word);
return node != null && node.isEnd();
}
private TrieNode searchprefix(String word) {
TrieNode node = root;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
if (node.containskey(ch)) {
node = node.get(ch);
} else {
return null;
}
}
return node;
}
public boolean startwith(String prefix) {
TrieNode node = searchprefix(prefix);
return node != null;
}
}