1、基本定义
设角
α
\alpha
α 的终边与单位圆
交于点
P
(
x
,
y
)
P(x,y)
P(x,y),则有
s
i
n
α
=
y
;
c
o
s
α
=
x
;
\begin{aligned}sin\alpha=y;\ \ \ cos\alpha=x;\end{aligned}
sinα=y; cosα=x;
t a n α = y x ; c o t α = x y ; \begin{aligned}tan\alpha=\dfrac{y}{x};\ \ cot\alpha=\dfrac{x}{y};\end{aligned} tanα=xy; cotα=yx;
s e c α = 1 x ; c s c α = 1 y ; sec\alpha=\dfrac{1}{x};\ \ csc\alpha=\dfrac{1}{y}; secα=x1; cscα=y1;
2、平方关系
s
i
n
2
x
+
c
o
s
2
x
=
1
\begin{aligned}sin^{2}x+cos^{2}x=1\end{aligned}
sin2x+cos2x=1
t
a
n
2
x
+
1
=
s
e
c
2
x
\begin{aligned}tan^{2}x+1=sec^{2}x\end{aligned}
tan2x+1=sec2x
1
+
c
o
t
2
x
=
c
s
c
2
x
\begin{aligned}1+cot^{2}x=csc^{2}x\end{aligned}
1+cot2x=csc2x
3、两角和三角函数公式
s i n ( A + B ) = s i n A c o s B + c o s A s i n B s i n ( A − B ) = s i n A c o s B − c o s A s i n B c o s ( A + B ) = c o s A c o s B − s i n A s i n B c o s ( A − B ) = c o s A c o s B + s i n A s i n B t a n ( A + B ) = t a n A + t a n B 1 − t a n A t a n B t a n ( A − B ) = t a n A − t a n B 1 + t a n A t a n B c o t ( A − B ) = c o t A c o t B − 1 c o t B + c o t A c o t ( A − B ) = c o t A c o t B + 1 c o t B − c o t A \begin{aligned} &sin(A+B) = sinAcosB+cosAsinB \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ &sin(A-B) = sinAcosB-cosAsinB \\ &cos(A+B) = cosAcosB-sinAsinB \\ &cos(A-B) = cosAcosB+sinAsinB \\ &tan(A+B)=\dfrac{tanA+tanB}{1-tanAtanB} \\ &tan(A-B)=\dfrac{tanA-tanB}{1+ tanAtanB} \\ &cot(A-B)=\dfrac{cotAcotB-1}{cotB +cotA} \\ &cot(A-B)=\dfrac{cotAcotB+1}{cotB-cotA} \\ \end{aligned} sin(A+B)=sinAcosB+cosAsinB sin(A−B)=sinAcosB−cosAsinBcos(A+B)=cosAcosB−sinAsinBcos(A−B)=cosAcosB+sinAsinBtan(A+B)=1−tanAtanBtanA+tanBtan(A−B)=1+tanAtanBtanA−tanBcot(A−B)=cotB+cotAcotAcotB−1cot(A−B)=cotB−cotAcotAcotB+1
4、倍角三角函数公式
s i n ( 2 A ) = 2 s i n A c o s A c o s ( 2 A ) = c o s 2 A − s i n 2 A = 2 c o s 2 A − 1 = 1 − 2 s i n 2 A t a n ( 2 A ) = 2 t a n A 1 − t a n 2 A \begin{aligned} &sin(2A)=2sinAcosA \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ &cos(2A) = cos^{2}A-sin^{2}A=2cos^{2}A-1=1-2sin^{2}A \\ &tan(2A)=\dfrac{2tanA}{1-tan^{2}A} \\ \end{aligned} sin(2A)=2sinAcosA cos(2A)=cos2A−sin2A=2cos2A−1=1−2sin2Atan(2A)=1−tan2A2tanA
5、三倍角三角函数公式
s
i
n
(
3
A
)
=
3
s
i
n
A
−
4
(
s
i
n
A
)
3
\begin{aligned}sin(3A)=3sinA-4(sinA)^{3}\end{aligned}
sin(3A)=3sinA−4(sinA)3
c
o
s
(
3
A
)
=
4
(
c
o
s
A
)
3
−
3
c
o
s
A
\begin{aligned}cos(3A) = 4(cosA)^{3}-3cosA\end{aligned}
cos(3A)=4(cosA)3−3cosA
t
a
n
(
3
A
)
=
t
a
n
A
t
a
n
(
π
3
+
A
)
t
a
n
(
π
3
−
A
)
\begin{aligned}tan(3A) = tanAtan(\dfrac{\pi}{3}+A) tan(\dfrac{\pi}{3}-A)\end{aligned}
tan(3A)=tanAtan(3π+A)tan(3π−A)
6、半角三角函数公式

7、和差化积三角函数公式

8、积化和差三角函数公式

8、诱导三角函数公式
1、适用于
s
i
n
(
k
2
π
±
α
)
,
c
o
s
(
k
2
π
±
α
)
,
t
a
n
(
k
2
π
±
α
)
,
c
o
t
(
k
2
π
±
α
)
sin(\dfrac{k}{2}\pi \pm \alpha),cos(\dfrac{k}{2}\pi \pm \alpha),tan(\dfrac{k}{2}\pi \pm \alpha),cot(\dfrac{k}{2}\pi \pm \alpha)
sin(2kπ±α),cos(2kπ±α),tan(2kπ±α),cot(2kπ±α) 的化简。
2、口诀:
奇变偶不变,符号看象限。
\textcolor{red}{奇变偶不变,符号看象限。}
奇变偶不变,符号看象限。
奇偶:指
k
k
k 是奇数还是偶数。
\,\,\,
变:
s
i
n
⟷
c
o
s
,
t
a
n
⟷
c
o
t
sin\longleftrightarrow cos,tan\longleftrightarrow cot
sin⟷cos,tan⟷cot 。
符号:把
α
\alpha
α 当成锐角,看
k
2
π
±
α
\dfrac{k}{2}\pi \pm \alpha
2kπ±α 所在象限,判断原式的正负。
s
i
n
(
−
α
)
=
−
s
i
n
α
;
c
o
s
(
−
α
)
=
c
o
s
α
\begin{aligned}sin(-\alpha)=-sin\alpha;\ \ \ \ cos(-\alpha)=cos\alpha\end{aligned}
sin(−α)=−sinα; cos(−α)=cosα
s
i
n
(
π
−
α
)
=
s
i
n
α
;
c
o
s
(
π
−
α
)
=
−
c
o
s
α
\begin{aligned}sin(\pi-\alpha)=sin\alpha;\ \ \ cos(\pi-\alpha)=-cos\alpha\end{aligned}
sin(π−α)=sinα; cos(π−α)=−cosα
s
i
n
(
π
+
α
)
=
−
s
i
n
α
;
c
o
s
(
π
+
α
)
=
−
c
o
s
α
\begin{aligned}sin(\pi+\alpha)=-sin\alpha;cos(\pi+\alpha)=-cos\alpha\end{aligned}
sin(π+α)=−sinα;cos(π+α)=−cosα
… …