三角恒等式
- sec 2 x = 1 + tan 2 x \sec^2x=1+\tan^2x sec2x=1+tan2x
- csc 2 x = 1 + cot 2 x \csc^2x=1+\cot^2x csc2x=1+cot2x
三角关系式
- sec x = 1 cos x \sec x=\dfrac{1}{\cos x} secx=cosx1
- csc x = 1 sin x \csc x=\dfrac{1}{\sin x} cscx=sinx1
- cot x = 1 tan x \cot x=\dfrac{1}{\tan x} cotx=tanx1
反三角关系式
- arccos x = π 2 − arcsin x \arccos x=\dfrac{\pi}{2}-\arcsin x arccosx=2π−arcsinx
- a r c c o t x = π 2 − arctan x \newcommand{\arccot}{\mathrm{arccot}\,}\arccot x=\dfrac{\pi}{2}-\arctan x arccotx=2π−arctanx
降幂公式
- sin 2 x = 1 − cos 2 x 2 \sin^2x=\dfrac{1-\cos 2x}{2} sin2x=21−cos2x
- cos 2 x = 1 + cos 2 x 2 \cos^2x=\dfrac{1+\cos 2x}{2} cos2x=21+cos2x
倍角公式
- sin 2 x = 2 sin x cos x \sin 2x=2\sin x \cos x sin2x=2sinxcosx
- cos 2 x = cos 2 x − sin 2 x = 2 cos 2 x − 1 = 1 − 2 sin 2 x \cos 2x=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2x cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
- tan 2 x = 2 tan x 1 − tan 2 x \tan 2x=\dfrac{2\tan x}{1-\tan^2x} tan2x=1−tan2x2tanx
积化和差公式
- sin α cos β = 1 2 [ sin ( α + β ) + sin ( α − β ) ] \sin \alpha \cos \beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(α−β)]
- cos α sin β = 1 2 [ sin ( α + β ) − sin ( α − β ) ] \cos \alpha \sin \beta=\dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)−sin(α−β)]
- cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] \cos \alpha \cos \beta=\dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(α−β)]
- sin α sin β = − 1 2 [ cos ( α + β ) − cos ( α − β ) ] \sin \alpha \sin \beta=-\dfrac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] sinαsinβ=−21[cos(α+β)−cos(α−β)]
和差化积公式
- sin α + sin β = 2 sin α + β 2 cos α − β 2 \sin \alpha+\sin \beta=2\sin \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2α−β
- sin α − sin β = 2 cos α + β 2 sin α − β 2 \sin \alpha-\sin \beta=2\cos \dfrac{\alpha+\beta}{2}\sin \dfrac{\alpha-\beta}{2} sinα−sinβ=2cos2α+βsin2α−β
- cos α + cos β = 2 cos α + β 2 cos α − β 2 \cos \alpha+\cos \beta=2\cos \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2α−β
- cos α − cos β = − 2 sin α + β 2 sin α − β 2 \cos \alpha-\cos \beta=-2\sin \dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} cosα−cosβ=−2sin2α+βsin2α−β
- tan α ± tan β = sin ( α ± β ) cos α ⋅ cos β \tan \alpha \pm \tan \beta=\dfrac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta} tanα±tanβ=cosα⋅cosβsin(α±β)
- cot α ± cot β = ± sin ( α ± β ) sin α ⋅ sin β \cot \alpha \pm \cot \beta=\pm \dfrac{\sin(\alpha \pm \beta)}{\sin \alpha \cdot \sin \beta} cotα±cotβ=±sinα⋅sinβsin(α±β)