【高等数学】三角公式

三角恒等式

  • sec ⁡ 2 x = 1 + tan ⁡ 2 x \sec^2x=1+\tan^2x sec2x=1+tan2x
  • csc ⁡ 2 x = 1 + cot ⁡ 2 x \csc^2x=1+\cot^2x csc2x=1+cot2x

三角关系式

  • sec ⁡ x = 1 cos ⁡ x \sec x=\dfrac{1}{\cos x} secx=cosx1
  • csc ⁡ x = 1 sin ⁡ x \csc x=\dfrac{1}{\sin x} cscx=sinx1
  • cot ⁡ x = 1 tan ⁡ x \cot x=\dfrac{1}{\tan x} cotx=tanx1

反三角关系式

  • arccos ⁡ x = π 2 − arcsin ⁡ x \arccos x=\dfrac{\pi}{2}-\arcsin x arccosx=2πarcsinx
  • a r c c o t   x = π 2 − arctan ⁡ x \newcommand{\arccot}{\mathrm{arccot}\,}\arccot x=\dfrac{\pi}{2}-\arctan x arccotx=2πarctanx

降幂公式

  • sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 \sin^2x=\dfrac{1-\cos 2x}{2} sin2x=21cos2x
  • cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 \cos^2x=\dfrac{1+\cos 2x}{2} cos2x=21+cos2x

倍角公式

  • sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin 2x=2\sin x \cos x sin2x=2sinxcosx
  • cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x = 2 cos ⁡ 2 x − 1 = 1 − 2 sin ⁡ 2 x \cos 2x=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2x cos2x=cos2xsin2x=2cos2x1=12sin2x
  • tan ⁡ 2 x = 2 tan ⁡ x 1 − tan ⁡ 2 x \tan 2x=\dfrac{2\tan x}{1-\tan^2x} tan2x=1tan2x2tanx

积化和差公式

  • sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \alpha \cos \beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]
  • cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos \alpha \sin \beta=\dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]
  • cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \alpha \cos \beta=\dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
  • sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin \alpha \sin \beta=-\dfrac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] sinαsinβ=21[cos(α+β)cos(αβ)]

和差化积公式

  • sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin \alpha+\sin \beta=2\sin \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ
  • sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin \alpha-\sin \beta=2\cos \dfrac{\alpha+\beta}{2}\sin \dfrac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ
  • cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos \alpha+\cos \beta=2\cos \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ
  • cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos \alpha-\cos \beta=-2\sin \dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ
  • tan ⁡ α ± tan ⁡ β = sin ⁡ ( α ± β ) cos ⁡ α ⋅ cos ⁡ β \tan \alpha \pm \tan \beta=\dfrac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta} tanα±tanβ=cosαcosβsin(α±β)
  • cot ⁡ α ± cot ⁡ β = ± sin ⁡ ( α ± β ) sin ⁡ α ⋅ sin ⁡ β \cot \alpha \pm \cot \beta=\pm \dfrac{\sin(\alpha \pm \beta)}{\sin \alpha \cdot \sin \beta} cotα±cotβ=±sinαsinβsin(α±β)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值