ViViT: A Video Vision Transformer 阅读笔记

本文是关于ViViT的阅读笔记,ViViT是Google Research提出的一种纯Transformer结构,应用于视频分类。文章探讨了四种不同的Transformer设计,包括直接复用原始Transformer、Factorised encoder、Factorised self-attention和Factorised dot-product attention。此外,还介绍了不同token构建方法,如Uniform frame sampling和Tubelet embedding。ViViT在行为识别领域展现出潜力,预示着video transformer是未来值得关注的研究方向。
摘要由CSDN通过智能技术生成

论文:https://arxiv.org/pdf/2103.15691.pdf

开源代码:无

时间线:2021 arxiv

领域:行为识别

机构:google research

1.Motivation

使用纯transformer结构解决视频分类问题;

2.主要方法

2.1 transformer结构设计

        

一共四种transformer结构:1.直接复用原始transformer

                                            2.Factorised encoder

                                            3.Factorised self-attention

                                            4.Factorised dot-product attention

2.2 token的构建

        1.Uniform frame sampling

        2.Tubelet embedding

3.效果

4,结论

目前video transformer 还刚刚兴起,可以关注一下今年ActivityNet Challenge的冠军方法,都是参照transformer进行改造的,目前来看是可以多多挖掘的方向 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值