自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

清欢

人间有味是清欢

  • 博客(219)
  • 论坛 (1)
  • 收藏
  • 关注

原创 文章汇总

PythonPython手册(1) Anaconda & pip

2020-05-21 10:16:12 5030

原创 ROS 使用记录(3) 自定义消息格式

文章目录0. 前言1. 创建 `.msg` 文件2. 构建 pkg 解析 `.msg` 文件3. 在其他 pkg 中使用自定义消息0. 前言ROS 中可通过 publisher/subscriber 和 topic 实现设计模式中的发布-订阅模式。而传递数据的基本数据结构就是message(消息)ROS 中定义了很多消息格式,比如数字、字符串、图片等。然而,在实际开发过程中,往往需要自己定义消息格式。自定义消息的实际使用可分为三个部分第一步:确定数据结构,创建 .msg 文件第二步

2021-09-03 11:22:58 28

原创 ROS 小技巧 - 引用同一工作区中pkg

1. 需求要写的ROS代码比较多,有很多公共功能。希望把公共部分单独作为一个pkg,供同一工作区中的其他pkgs引用。参考:ROS:使用同一工作空间下不同包的头文件2. 实现本质上就是实现两个pkg(记为A与B),假设B引用A。如果只引用A中的头文件(而不是.so lib),那A的实现与普通pkg实现没有太大不同,需要注意的是,在 CMakeLists.txt 中需要catkin_package( # 这一行必须有 # 如果不是别的pkg要调用,下面这行没有也没事,原因

2021-09-02 19:47:07 20

原创 ROS 小技巧 - OpenCV4 与 CV_Bridge 配合使用

1. 现象ROS默认的Python版本是3.3,但我系统安装的是OpenCV4.5如果直接在pkg中使用cv_bridge和opencv4.5就会有问题。会有一些undefined reference问题参考资料:ROS 下使用Opencv4.4.0,并且使用cv_bridge转换msgs 与 opencv图像注意,重新编译并不能解决问题kinetic版本下,用OpenCV4.5.0编译cv_bridge失败,原因没细看,感觉上是API改变导致的。2. 解决

2021-09-02 19:08:11 99

原创 ROS 小技巧 - Ctrl+C 退出 ROS 程序

1. 现象在使用 rosrun 启动 ROS 节点的时候,默认情况下使用 ctrl+c 无法退出程序。原因我也不太清楚,可能是 ROS 程序默认接管了所有信号量(ctrl+c就是一个信号量)2. 解决参考资料:官方文档-Initialization and Shutdown自定义信号量处理的函数(代码来自上面的文档)切换行号显示#include <ros/ros.h>#include <signal.h>void mySigintHandler(i

2021-09-02 12:30:24 170

原创 ROS 小技巧 - VSCode 中设置 ROS 编译环境

1. 编译环境目标:在VSCode写代码时,能够正常解析ROS相关头文件,并跳转。流程第一步:在执行 catkin_make 的时候指定参数 -DCMAKE_EXPORT_COMPILE_COMMANDS=Yes第二步:在 c_cpp_properties.json 中添加 "compileCommands": "${workspaceFolder}/build/compile_commands.json"如果还是不能跳转,记得吧 build/devel 删了重来2. 运行环

2021-09-02 10:55:14 44 2

原创 ROS 使用记录(2) 日志系统与roslaunch

文章目录0. 前言1. 日志系统2. roslaunch0. 前言本文主要内容:ROS 中自带了日志系统,本文简单学习一下基本使用。ROS 中启动节点的主要方法就是 roslaunch,需要仔细学习一下用法。参考资料:官方文档-roscpp/Overview/Logging官方文档-rosconsole官方文档-roslaunch官方文档-roslaunch/XML官方文档-Roslaunch tips for large projectslaunch文件中param、ros

2021-09-02 10:26:43 44

原创 侯捷 C++面向对象开发 (1) 面向过程

文章目录0. 前言第二课 - 头文件与类的声明第三课-构造函数第四课-函数传递与返回值第五课-操作符重载与临时对象第六课-复习Complex类的实现过程第七课-拷贝构造,构造复制,析构第八课-堆,栈与内存管理第九课-复习String类的实现过程第十课-扩展补充:类模版,函数模版,及其他0. 前言侯捷大佬所有C++课程之一全部课程参考这里本文对应的课程: 面向过程包括第二课到第十课,相关内容主要是以实现 Complex 类与 String 类为目标介绍了类创建的基本语法、思路

2021-09-01 23:48:56 28

原创 ROS 使用记录(1) ROS安装以及项目构建与运行

文章目录0. 前言1. ROS 安装2. Hello World 程序2.1 创建工作区2.2 创建 package2.3 编译 package2.4 运行 package0. 前言为了将深度学习模型部署到ROS系统中,接下去一段时间会学习很多ROS相关的内容,希望通过一段时间的学习,能达到侯捷老师说的“心中自有丘壑”。本文内容:ROS 的安装ROS 项目的构建与 hello world 项目的运行1. ROS 安装参考资料英文文档,中文文档ROS 的版本

2021-08-31 18:21:10 40

原创 TensorFlow Object Detection API 模型转换为 MNN (1)

文章目录0. 前言1. TFLite 生成流程1.1 运行 `export_tflite_ssd_graph.py` 脚本1.2 `tflite_convert` 工具使用2. TensorFlow Object Detection API 模型转换脚本2.1 过程2.2 测试结果附录TFLite 的输入与输出0. 前言最近在做目标检测模型的端侧部署,想把目前开源的一系列模型部署到 ARM CPU 下进行测试。常见的目标检测端侧模型主要都是 yolo 系列和 ssd 系列。ssd 系列模型中,

2021-08-23 15:39:10 61

原创 实时语义分割调研

文章目录0. 前言1. 语义分割概述2. 一些总结3. 论文浏览3.1 ENet3.2 ICNet3.3 BiSeNet3.4 CGNet3.5 DFANet3.6 Fast-SCNN3.7 BiSeNetV23.8 HyperSeg3.9 Rethinking BiSeNet For Real-time Semantic Segmentation0. 前言实时语义分割(real-time semantic segmentation),目标是能实时跑在CPU上。本文调研的基本都是普通的语义分割方法,

2021-08-05 16:59:57 209

原创 CS194 Full Stack Deep Learning(5) Troubleshooting Deep Neural Networks

文章目录0. 前言1. 为什么深度学习调试很难?2. 调试策略与过程2.1. Start Simple2.2. Implement & Debug2.3. 评估模型2.4. 改进模型与数据集2.5. 超参数调节0. 前言相关资料fall2019资料《全栈深度学习第5期: 神经网络调试技巧》B站视频(字幕是自动生成的,但也差不多够用)为什么要聊聊深度学习调试(Troubleshotting)80%以上的时间在调试,剩下一点点时间在尝试新内容。主要内容:为什么深度学习调

2021-07-22 00:15:17 193

原创 PytorchVideo Transforms 详解

文章目录0. 前言1. Mix 操作2. 普通操作2.1 Norm 与其他2.2 Sample Strategy2.3 Resize & Crop3. “高端”数据增强4. create_video_transform0. 前言看到 PytorchVideo 中有 RandAugment 以及 AugMix,我有心把这些引入 MMAction2。在写代码之前,先详细了解下 PyTorchVideo Transforms 的细节。PytorchVideo Transforms 主要可分为

2021-07-10 16:52:28 472 1

原创 Latex 入门笔记(2) 常用语法

文章目录0. 前言1. LaTeX 文档总体结构2. 字符相关3. 文档元素3.1 章节与目录3.2 标题页3.3 列表、引用、摘要、代码3.4 表格4. 排版格式4.1 字体、字号、下划线4.2 段落格式与间距0. 前言最近要写一些比较正式的文档,以前一直用 Word,但非常不喜欢。现在下定决心学习一下 Latex,希望通过三个笔记来入门安装与 VSCode 环境搭建常用语法(本文)模版推荐与使用参考资料LaTeX科技排版入门张敬信老师的LaTeX入门讲座一份其实很短

2021-07-10 01:13:50 62 2

原创 Latex 入门笔记(1) 安装以及 VSCode 环境搭建

文章目录0. 前言1. TexLive 安装2. VSCode 环境搭建0. 前言最近要写一些比较正式的文档,以前一直用 Word,但非常不喜欢。现在下定决心学习一下 Latex,希望通过三个笔记来入门安装与 VSCode 环境搭建(本文)常用语法模版推荐与使用本文主要内容TexLive 安装VSCode Latex Workshop 环境使用1. TexLive 安装第一步:从官网下载 TeX Live的iso包。第二步:解压镜像并启动安装。

2021-07-09 01:36:20 71 1

原创 全景分割调研(3) 当前研究现状

文章目录0. 前言1. 研究现状2. 单篇论文笔记2.1 Panoptic Feature Pyramid Networks2.2 Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation2.3 Fully Convolutional Networks for Panoptic Segmentation0. 前言全景分割调研系列文章分为4篇问题引入与性能指标常用数据集当前研

2021-07-06 18:44:44 388

原创 记录一个 Python sys.path 相关BUG

文章目录1. BUG 描述2. 问题解决2.1 治标不治本的方法2.2 治本的方法2.3 原理探究1. BUG 描述环境一Ubuntu 16.04 中有多个 Python 版本,包括系统默认(即 sudo apt install python3)Python3.5 以及一个通过源码安装的 Python 3.6没有使用 anaconda 管理不同 Python 版本。环境二:有多个版本的Python,通过 anaconda 管理。BUG细节在指定Python环境(环境一的

2021-07-06 14:56:46 21

原创 全景分割调研(1) 问题引入与性能指标

文章目录0. 前言1. 问题引入1.1 要解决什么问题1.2 用了什么方法1.3 还存在什么问题&可借鉴之处2 性能指标2.1 对于性能指标的要求2.2 PQ 的定义与实现2.3 COCO 中的细节0. 前言全景分割调研系列文章分为4篇问题引入与性能指标(本文)常用数据集当前研究现状(现有模型分类以及当前常见研究方向)相关开源项目简介本文主要内容全景分割的引入(也就是这篇论文的笔记)全景分割常用性能指标介绍1. 问题引入相关资料:arxivgithub

2021-07-06 00:26:55 53

原创 GoogleTest 入门(1) 官网文档浏览

文章目录0. 前言1. Getting Started2 Googletest Primer0. 前言要转型成为C++工程师,要走的路还很长啊……最近写了不少C++代码和项目,单元测试都是自己随便写写,不成体系,希望能够了解下业界的写法,自己也学一学。单元测试框架好像没有什么悬念,就是googletest了。官方资料阅读官方资料:Github,文档GooglgTest是由之前两个项目 GoogleTest 和 GoogleMock 组成,所以在文档中,基本上也可以分为 Goo

2021-07-05 18:05:16 81 3

原创 GoogleTest 入门(2) CMake 项目中引入 GTest

文章目录0. 前言1. 方式一:完全不使用CMake特殊语法2. 方式二:ctest3. 方式三:find_package4. 方式四:使用 CMake 中 GTest 相关的特殊语法0. 前言场景很简单:自己的项目中创建了一系列单元测试,如何引入 GTest,如何执行测试。准备工作:git clone https://github.com/google/googletest.gitcd googletestmkdir build && cd build &&

2021-07-05 18:04:22 242

原创 C++ 日志工具 spdlog 简单实用

文章目录0. 前言1. 安装与引入1.1 安装1.2 其他项目中引入2. 使用2.1 构建logger2.2 设置日志等级2.3 自定义日志输出格式2.4 注册与获取2.5 输出日志3. 其他0. 前言参考资料:官网wiki就够用了1. 安装与引入1.1 安装因为spdloggit clone https://github.com/gabime/spdlog.gitcd spdlog && mkdir build && cd buildcmake .

2021-07-05 01:34:18 142

原创 全景分割调研(2) 常用数据集

文章目录0. 前言1 COCO2 Cityscapes3 Mapillary4 KITTI5 Indian Driving Dataset附录COCO 数据集类别Cityscapes 类别0. 前言根据 paperswithcode 中描述,常用的全景分割数据集包括 COCO/Cityscapes/Mapillary/KITTI,下面分别介绍1 COCO官网,Github官网直接下载(只不过如果没有梯子,随缘进官网)数据:就是COCO2017的train/val/test数据集类别:

2021-07-02 19:29:31 209

原创 Deepstream 资料阅读记录

文章目录0. 前言1 DeepStream: Next-Generation Video Analytics for Smart Cities2 DeepStream SDK3. DeepStream Getting Started4. NVIDIA DeepStream SDK Developer Guide0. 前言官方文档DeepStream: Next-Generation Video Analytics for Smart Cities,对应翻译DeepStream Getting S

2021-07-02 13:55:14 106

原创 CVPR2021 Tutorial & Workshop 调研

文章目录0. 前言Mobile Visual Analytics: A CVPR 2021 Tutorial2nd Comprehensive Tutorial on Video ModelingAffective Understanding in VideoLarge scale holistic video understandingThe Eighth International Workshop on Egocentric Perception, Interaction and Computing

2021-06-29 23:26:18 271 1

原创 MMDetection CenterNet 源码解析

文章目录0. 前言1. 模型构建2. `BaseDetector`3. `SingleStageDetector`4. `CenterNetHead`0. 前言CenterNet是我很喜欢的一篇论文,直观、好懂。然而,官方的 CenterNet 源码质量真的一般,看过的人应该都有这种感觉。好消息是,MMDetection 中复现了 CenterNet,可以参考这里此外,我想要复现时空行为检测中的 MOC-Detector,这篇文章也是基于 CenterNet 的,所以要捋一捋 Cente

2021-06-14 02:39:26 368 7

原创 mmaction2 性能指标相关源码解析

文章目录0. 前言1. 训练时性能指标2. 验证/测试时性能指标0. 前言想实现一个TubeDataset,要实现性能指标相关功能。之前一直都没有仔细研究过相关源码,趁这个机会都看一下。从结构上看,性能指标相关源码可以分为:训练时性能指标:无法通过配置文件配置,每类任务(分类、定位、检测)都有固定的性能指标展示验证时性能指标:通过 EvalHook 实现,EvalHook中的核心流程与测试时完全一致。配置文件中 evaluation 选项的参数会传递到 dataset.evalua

2021-06-11 19:14:58 152

原创 时空行为检测数据集 MultiSports 详解

文章目录0. 前言1. 时空行为检测数据集现状2 MultiSports 介绍3 现有时空行为检测数据集统计与对比4 实验结果0. 前言相关资料官方资料:论文,官网,竞赛链接(2021.9.1)发布时间:ICCV 2021发布机构:南京大学一句话总结:机遇篮球、足球、体操、排球赛事的大型时空行为检测数据集。本数据集是 DeeperAction Workshop 三个赛道之一。数据集获取方式就是到竞赛链接下载(要先注册+申请)。下在下来的数据类似于 UCF101-24 和 JHMD

2021-06-09 13:40:26 357 3

原创 HOI - Detecting and Recognizing Human-Object Interactions

文章目录0. 前言1. 要解决什么问题2. 用了什么方法3. 效果如何4. 还存在什么问题&可借鉴之处0. 前言相关资料:arxivgithub论文解读论文基本信息领域:HOI作者单位:FAIR发表时间:CVPR 2018一句话总结:扩展 Fast R-CNN,使用多任务训练实现HOI中 human/verb/object 三元组预测1. 要解决什么问题之前的主要工作都集中在单个人/物体的识别上,然而在现实世界中,人与物体之间是存在相互关系的。2. 用了

2021-06-08 15:25:10 45 1

原创 Backbone - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

文章目录0. 前言1. 要解决什么问题2. 用了什么方法3. 效果如何4. 还存在什么问题&可借鉴之处0. 前言相关资料:arxivgithub论文解读论文基本信息领域:Transformer作者单位:微软亚洲研究院发表时间:2021.3一句话总结:将 hierarchical 引入 Transformer1. 要解决什么问题CV和NLP任务相比,CV的特点是(换句话说,就是Transformer用在CV时可能存在的问题)large variation

2021-06-04 19:28:30 153

原创 行为识别 - No frame left behind: Full Video Action Recognition

文章目录0. 前言1. 要解决什么问题2. 用了什么方法3. 效果如何4. 还存在什么问题&可借鉴之处0. 前言相关资料:arxivgithub论文解读论文基本信息领域:行为识别作者单位:荷兰代尔夫特理工大学发表时间:CVPR 2021一句话总结:使用多帧activations累加结果计算一次梯度,来替代普通求梯度方式。1. 要解决什么问题现在行为识别的输入数据是一个视频的 coarsely sub-sampled frames,换句话说,就是从视频中提取

2021-06-03 18:59:06 292 5

原创 龙书《编译原理》摘要 第一章 引论

文章目录0. 前言1. 语言处理器2. 编译器基本结构3. 一些常用术语0. 前言最近开始研究TVM源码,总感觉自己抓不住主线。说是实现了新语言Relay,里面那些奇怪的东西是什么?是类似TF实现静态图吗?又感觉不太像。TVM叫深度学习编译器,网上找了个课程,看了一集,突然感觉打开了新世界的大门。不是科班出身,虽然本科数据结构学得很好,但根本没学过编译原理。看了课程之后,突然理解Relay的各种设计了(虽然细节不明白,但总体方向有点感觉了)。现在看Relay,都就一个思路:用C实

2021-06-03 15:56:52 37

原创 深度学习编译器系列视频摘要

文章目录0. 前言深度学习编译器(一)综述深度学习编译器(二)Auto TVM深度学习编译器(三) Auto Schedule0. 前言在B站黄雍涛博士发了几个深度学习编译器的视频,感觉说得挺好,所以记录一下。深度学习编译器(一)综述视频链接:深度学习编译器的作用:加速推理。深度学习编译器总架构一般分为前端与后端。前端:把各种各样的模型转换为编译器认识的形式(如TVM的Relay,一般都是DAG的形式),再进行各类图优化、算子融合等(都属于经典的《编译原理》的一部分)。后

2021-05-28 21:56:52 118

原创 Standford Compilers 摘要(1) Overview of Compilers

文章目录Lecture 1: IntroductionLecture 2: Stucture of a CompilerLecture 3: The Economy of Programming LanguagesLecture 1: Introduction实现编程语言的两种常见方式:编译器:本课程重点介绍,可认为是 offline,即先生成 exec,再通过 exec 和输入数据生成结果。解释器:非本课程内容,可认为是 online,直接输入程序以及输入数据,得到结果(没有exec)

2021-05-27 19:07:00 10

原创 C++ 日志工具 glog 简单实用

文章目录0. 前言1. 安装与 CMake 导入2. 源码修改2.1 初始化0. 前言参考资料Gihub-README 基本就够了(有个翻译)选择 glog 的主要原因在于好像其他库用得比较多。根据查到的资料看,glog 的速度较慢(参考这里)。1. 安装与 CMake 导入安装:实用的 0.5.0 版本使用 cmake 构建# wget https://github.com/google/glog/archive/refs/tags/v0.5.0.tar.gz

2021-05-20 16:29:03 149

原创 C++ 性能分析工具调研

文章目录0. 前言1. gprof3. valgrind4. gperftools5. perf0. 前言目标:性能分析(profile)包含的内容特别多,但目前我只关注运行时间。详细要求:最终也没找到合适的(需要每个函数的平均运行时间),看来还是需要手写记录。参考资料PPT - C/C++调试、跟踪及性能分析工具综述:介绍了一些常用性能分析工具。How can I profile C++ code running on Linux?:很多很好的回答,建议把高赞的都看一遍,特别是这

2021-05-20 15:16:40 432

原创 tkDNN 使用与源码浏览

文章目录0. 前言1. 使用2. 源码浏览2.1 文件夹结构2.2 项目总体结构0. 前言参考资料:GithubtkDNN代码的使用和理解tkDNN 是什么简单说,就是利用 cuDNN 和 TensorRT 实现了一些网络,目标部署在 Jetson 设备上。官方介绍如下文所示tkDNN is a Deep Neural Network library built with cuDNN and tensorRT primitives, specifically thoug

2021-05-08 18:18:56 195

原创 TensorRT 入门(7) INT8 量化

文章目录0. 前言1. sampleINT81.1 实例简介1.2 扩展阅读2. sampleINT8API2.1 实例简介2.2 扩展阅读3. Python Caffe MNIST INT80. 前言TensorRT 提供了 FP16 量化与 INT8 量化。前者通过 FP32 engine 或 ONNX 模型就可以直接得到。后者多了一步操作,需要进行校准(calibration),生成校准文件。官方提供了两个samplesampleINT8 - Performing Inferen

2021-05-06 18:50:44 998 5

原创 模型压缩调研

文章目录更新记录0. 前言1. 方向与现状2. 短期计划长期工作安排更新记录2021-05-06:初步调研现状,确定短期内的工作。0. 前言本文介绍模型压缩所包含的研究方向、现状以及后续研究安排。注意:本文内容仅面向算法层优化,不考虑硬件、框架优化。1. 方向与现状研究方向基本内容应用现状个人评价结构优化使用矩阵分解、权重共享等手段,设计实现轻量化网络结构使用现成的轻量化网络,或使用NAS获取轻量化网络短期内不考虑,但未来肯定要学习量化使用

2021-05-06 11:52:32 105

原创 Yolov5 (1) 训练过程记录与解析

文章目录0. 前言1. 数据集相关1.1 自定义数据集构建1.2 数据增强策略2. 训练相关2.1 训练基本流程与参数2.2 超参数解析2.2 训练过程与结果解析0. 前言官方文档(官方资料总是最好的,必须先阅读):Train Custom Data:跑通DemoTips for Best Training Results:数据集构建经验,非常推荐阅读,本文不多介绍Multi-GPU Training:多卡训练教程记录一下训练过程,老忘了,尴尬。重点关注使用过程,以及相关参数,不关注细

2021-04-28 17:14:29 1769 11

原创 Open Images Dataset V6 简介

文章目录0. 前言1. 简介2. 获取以及标注格式2.1 数据获取2.2 标注格式附录:各种类别介绍检测标签(600类)视觉关系-人物/物体属性(15类)视觉关系 - 人物/物体之间相互关系(31类)视觉关系 - 人物/物体之间关系三元组(1767类)0. 前言官网,Github,官方介绍,官方介绍翻译版其他参考资料谷歌最新发布数据集:Open Images V6 来了!新增局部叙事标注形式Google更新最大的带注释图像数据集,添加本地化叙述1. 简介在很多领域,Open

2021-04-27 02:04:49 603 4

空空如也

How Tomcat Works中第二章提到的一个问题

发表于 2016-12-14 最后回复 2016-12-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除