目录
层次分析法是一种定性和定量相结合的、系统化的、层次化的分析方法。
层次分析法将一个复杂的目标决策问题(比如去哪旅游)作为一个系统,将目标分解为多个目标或准则,通过定性指标进行相关计算,以作为多方案优化决策依据的系统方法。
简单来说就是 将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
例题:
1.确定评价指标、构建评价体系
解决评价类问题,需要想到以下三个问题:
1.我们评价的目标是什么?
2. 我们为了达到这个目标有哪几种可选的方案?
3. 评价的准则或者说指标是什么?(根据什么东西来评价好坏)
以例题回答:
—般而言,前两个问题的答案是显而易见的,根据题目就能得出。
第三个问题的答案(即选取评价指标建立评价体系):
1.需要我们根据题目中的背景材料、常识以及网上搜集到的参考资料进行结合,从中筛选出最合适的指标。
2.如果找不到相关文献,就自己有依据地确定。
然后分析系统中各因素之间的关系,建立系统的评价体系:
2.得到判断矩阵
确定了准则层的n个因素(指标),C={c1,c2,c3,...,cn},比如景色、花费、环境、饮食、交通
要比较它们对目标的影响程度,确定在该层中相对于某一准则所占的比重。
综合各因素比较存在难度,所以先进行两两指标之间的比较。
用表示因素相对于因素的比较结果,则
A就是一个判断矩阵
如何填写判断矩阵里的数值,用下面的1-9标度方法:
举个例子:
填写判断矩阵,也就是把下表填写完整
填好这张表实际上就得到了判断矩阵,一般也叫正互反矩阵。
对每一个准则都填写判断矩阵:
每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角)
3. 层次单排序和一致性检验
(1)层次单排序(计算权重)
对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权重系数。
计算权重系数的方法:
①和积法(也叫算术平均法)
②几何平均法
③特征值法
① 和积法(算术平均法)
1) 将判断矩阵的每一列元素做归一化处理:
j指的是列
比如:
2) 将归一化的判断矩阵按行相加:
比如:
3) 对向量归一化
比如:
所得的w=(1.1176,0.5175,0.0611,0.3038)即为所求得的特征向量,亦即判断矩阵的层次单排序结果(即权重系数)
(2)一致性检验
得到判断矩阵后要进行一致性检验,为什么要进行一致性检验?
因为判断矩阵中的数值可能出现矛盾的地方,如下
所以要进行一致性检验。
一致矩阵
若矩阵中每个元素aij >0且满足,则我们称该矩阵为正互反矩阵。
在层次分析法中,我们构造的判断矩阵均是正互反矩阵。
若正互反矩阵满足,则我们称其为一致矩阵。
一致性检验的步骤:
第一步:计算一致性指标CI
第二步:查找对应的平均随机一致性指标RI
平均随机一致性指标是多次(500次以上)重复进行随机判断矩阵特征根计算之后取算术平均得到的。龚木森、许树柏1986年得出的1—15阶判断矩阵重复计算1000次的平均随机一致性指标如下:
RI只需要会查这个表就行
第三步:计算一致性比例CR
如果CR<0.1,则可认为判断矩阵的一致性可以接受;否则需要对判断矩阵进行修正。
一致性检验通过后,层次单排序中计算出的权重才能使用。
CR>0.1 如何修正?
往一致矩阵上调整,使一致矩阵各行成倍数关系。
4. 汇总结果得到权重矩阵
5. 计算各方案的得分
类似的,我们可以得到北戴河得分为0.245,桂林得分为0.455.
因此最佳的旅游景点是桂林。
参考资料:
1.清风数学建模视频
2.