层次分析法(AHP)

层次分析法(AHP)是一种结合定性与定量的决策分析方法,用于处理复杂问题。它包括确定评价指标、构建评价体系、得到判断矩阵、层次单排序与一致性检验、汇总权重矩阵和计算方案得分等步骤。通过判断矩阵和一致性检验确保决策的合理性。例如,在选择旅游目的地时,可以考虑景色、花费、环境、饮食和交通等多个因素,通过AHP计算出各个因素的权重,从而做出最佳决策。
摘要由CSDN通过智能技术生成

目录

1.确定评价指标、构建评价体系

2.得到判断矩阵

3. 层次单排序和一致性检验

(1)层次单排序(计算权重)

① 和积法(算术平均法)

(2)一致性检验

4. 汇总结果得到权重矩阵

 5. 计算各方案的得分


层次分析法是一种定性和定量相结合的、系统化的、层次化的分析方法。

层次分析法将一个复杂的目标决策问题(比如去哪旅游)作为一个系统,将目标分解为多个目标或准则,通过定性指标进行相关计算,以作为多方案优化决策依据的系统方法。

简单来说就是 将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性定量分析的决策方法。

例题:

1.确定评价指标、构建评价体系

 解决评价类问题,需要想到以下三个问题:

1.我们评价的目标是什么?

2. 我们为了达到这个目标有哪几种可选的方案?

3. 评价的准则或者说指标是什么?(根据什么东西来评价好坏)

以例题回答:

—般而言,前两个问题的答案是显而易见的,根据题目就能得出。

第三个问题的答案(即选取评价指标建立评价体系):

1.需要我们根据题目中的背景材料、常识以及网上搜集到的参考资料进行结合,从中筛选出最合适的指标。

2.如果找不到相关文献,就自己有依据地确定。

然后分析系统中各因素之间的关系,建立系统的评价体系:

2.得到判断矩阵

确定了准则层的n个因素(指标),C={c1,c2,c3,...,cn},比如景色、花费、环境、饮食、交通

要比较它们对目标的影响程度,确定在该层中相对于某一准则所占的比重。

综合各因素比较存在难度,所以先进行两两指标之间的比较。

a_i_j表示c_i因素相对于c_j因素的比较结果,则

A=(a_i_j)_{n\times n}=\begin{pmatrix} a_1_1 &a_1_2 & ...& a_1_n\\ a_2_1& a_2_2 & ... &a_2_n \\ ...&... &... &... \\ a_n_1 &a_n_2 &... &a_n_n \end{pmatrix}

A就是一个判断矩阵

如何填写判断矩阵里的数值,用下面的1-9标度方法:

 举个例子:

填写判断矩阵,也就是把下表填写完整

        

 填好这张表实际上就得到了判断矩阵,一般也叫正互反矩阵

 对每一个准则都填写判断矩阵:

每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角) 

3. 层次单排序和一致性检验

(1)层次单排序(计算权重)

对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权重系数。

计算权重系数的方法:

①和积法(也叫算术平均法)

②几何平均法

③特征值法

① 和积法(算术平均法)

1) 将判断矩阵的每一列元素做归一化处理:

\overline{b}_{ij}=\frac{b_{ij}}{\sum_{k=1}^{n} b_{kj}} (i,j=1,2,...,n)  j指的是列

比如:

2) 将归一化的判断矩阵按行相加:

\bar{w_i}=\sum_{j=1}^{n}\bar{b}_{ij} (i=1,2,...,n)

比如:

3) 对向量\bar{w}_i=(\bar{w}_1,\bar{w}_2,...,\bar{w}_n)^{T}归一化

w_i=\frac{\bar{w}_i}{\sum_{j=1}^{n} \bar{w}_j} (i=1,2,...,n)

比如:

 所得的w=(1.1176,0.5175,0.0611,0.3038)即为所求得的特征向量,亦即判断矩阵的层次单排序结果(即权重系数)

(2)一致性检验

得到判断矩阵后要进行一致性检验,为什么要进行一致性检验?

因为判断矩阵中的数值可能出现矛盾的地方,如下

 所以要进行一致性检验。

一致矩阵

若矩阵中每个元素aij >0且满足a_i_j\times a_j_i= 1,则我们称该矩阵为正互反矩阵。

在层次分析法中,我们构造的判断矩阵均是正互反矩阵。


若正互反矩阵满足a_i_j\times a_j_k= 1,则我们称其为一致矩阵。

 一致性检验的步骤:

第一步:计算一致性指标CI

CI=\frac{\lambda _{max}-n}{n-1}

第二步:查找对应的平均随机一致性指标RI

        平均随机一致性指标是多次(500次以上)重复进行随机判断矩阵特征根计算之后取算术平均得到的。龚木森、许树柏1986年得出的1—15阶判断矩阵重复计算1000次的平均随机一致性指标如下:

 RI只需要会查这个表就行

第三步:计算一致性比例CR

CR=\frac{CI}{RI}

如果CR<0.1,则可认为判断矩阵的一致性可以接受;否则需要对判断矩阵进行修正。

一致性检验通过后,层次单排序中计算出的权重才能使用。

CR>0.1 如何修正?

往一致矩阵上调整,使一致矩阵各行成倍数关系。

4. 汇总结果得到权重矩阵

 5. 计算各方案的得分

 类似的,我们可以得到北戴河得分为0.245,桂林得分为0.455.
因此最佳的旅游景点是桂林。

参考资料:

1.清风数学建模视频

2.

数学建模:层次分析法实例以及代码_拾牙慧者的博客-CSDN博客_层次分析法代码案例

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值