GRU(门控循环单元),易懂。

一、什么是GRU?

GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期记忆和反向传播中的梯度等问题,与LSTM的作用类似,不过比LSTM简单,容易进行训练。

二、GRU详解

GRU模型中有两个门,重置门和更新门,具体作用后面展开说。

先来看一张GRU的图,看不懂没关系,后面慢慢展开说。

符号说明:

x_{t}:当前时刻输入信息 

h_{t-1}:上一时刻的隐藏状态。隐藏状态充当了神经网络记忆,它包含之前节点所见过的数据的信息

h_{t}:传递到下一时刻的隐藏状态

\tilde{h}_{_{t}}:候选隐藏状态

r_{t}:重置门

z_{t}:更新门

\sigma:sigmoid函数,通过这个函数可以将数据变为0-1范围的数值。

tanh: tanh函数,通过这个函数可以将数据变为[-1,1]范围的数值

先不看内部具体的复杂关系,将上图简化为下图:

 结合x_{t} 和 h_{t-1},GRU会得到当前隐藏节点的输出y_{t}和传递给下一个节点的隐藏状态h_{t},这个h_{t} 

的推导是GRU的关键所在,我们看一下GRU所用到的公式:

这四个公式互有关联,并不是单独去使用,下面我们详细展开。

1. 重置门

 重置门决定了如何将新的输入信息与前面的记忆相结合,这句话猛的一看也不好理解,我们再继续拆解。

 

 将这个图片转化为公式就是重置门的公式:

这里W_{r}并不是一个值,而是一个权重矩阵。

用这个权重矩阵对x_{t}h_{t-1}拼接而成的矩阵进行线性变换(两个矩阵相乘)。然后将两个矩阵相乘得到的值投入sigmoide函数,会得到r_{t}的值,比如:0.6 。这个值会用到候选隐藏状态的公式中,即下面这个公式:

 为了方便理解,我们将这个公式展开:

\tilde{h}_{t}=tanh(x_{t} W_{xh}+(r_{t}\bigodot h_{t-1})W_{hh}+b_{h})

下面便是重点:

r_{t}的值越小,它与h_{t-1}哈达玛积出来的矩阵数值越小,再与权重矩阵相乘得到的值越小,也就是这个值越小,

说明上一时刻需要遗忘的越多,丢弃的越多。

r_{t}的值越大, 值越大,说明上一时刻需要记住的越多,新的输入信息(也就是当前的输入信息x_{t})与前面的记忆相结合的越多。

r_{t}的值接近0时,值也接近为0,说明上一时刻的内容需要全部丢弃,只保留当前时刻的输入,所以可以用来丢弃与预测无关的历史信息。

r_{t}的值接近1时,值也接近为1,表示保留上一时刻的隐藏状态。 

这就是重置门的作用,有助于捕捉时间序列里短期的依赖关系。

2.更新门

 更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,也就是更新门帮助模型决定到底要将多少过去的信息传递到未来,简单来说就是用于更新记忆。结合下面两个公式比较好理解:

更新门公式:

 

更新记忆表达式:

 z_{t}越接近1,代表”记忆“下来的数据越多;而越接近0则代表”遗忘“的越多。

 :表示对上一时刻隐藏状态进行选择性“遗忘”。忘记h_{t-1}中一些不重要的信息,把不相关的丢弃。

:表示对候选隐藏状态的进一步选择性”记忆“。会忘记 \tilde{h}_{_{t}}中的一些不重要的信息。也就是对\tilde{h}_{_{t}}中的某些信息进一步选择。

综上,

 h_{t}忘记传递下来的 h_{t-1}中的某些信息,并加入当前节点输入的某些信息。这就是最终的记忆。

门控循环单元GRU不会随时间而清除以前的信息,它会保留相关的信息并传递到下一个单元。

参考资料:

人人都能看懂的GRU - 知乎 (zhihu.com)

 GRU学习总结_哔哩哔哩_bilibili

出现这个错误的原因是在导入seaborn包时,无法从typing模块中导入名为'Protocol'的对象。 解决这个问题的方法有以下几种: 1. 检查你的Python版本是否符合seaborn包的要求,如果不符合,尝试更新Python版本。 2. 检查你的环境中是否安装了typing_extensions包,如果没有安装,可以使用以下命令安装:pip install typing_extensions。 3. 如果你使用的是Python 3.8版本以下的版本,你可以尝试使用typing_extensions包来代替typing模块来解决该问题。 4. 检查你的代码是否正确导入了seaborn包,并且没有其他导入错误。 5. 如果以上方法都无法解决问题,可以尝试在你的代码中使用其他的可替代包或者更新seaborn包的版本来解决该问题。 总结: 出现ImportError: cannot import name 'Protocol' from 'typing'错误的原因可能是由于Python版本不兼容、缺少typing_extensions包或者导入错误等原因造成的。可以根据具体情况尝试上述方法来解决该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ImportError: cannot import name ‘Literal‘ from ‘typing‘ (D:\Anaconda\envs\tensorflow\lib\typing....](https://blog.csdn.net/yuhaix/article/details/124528628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值