贝叶斯神经网络(BNN)作为深度学习领域的创新技术,正逐渐改变着我们对模型预测和不确定性处理的方式。它突破了传统神经网络的局限,通过引入贝叶斯推断,将网络参数视为概率分布,不仅能给出预测结果,还能量化预测的不确定性,为决策提供更可靠的依据。
在实际应用中,BNN展现出了巨大的潜力。从工程领域的疲劳寿命预测,到航空航天的气动载荷估计,它都能有效提升预测的准确性和可靠性。随着研究的深入,BNN相关的成果不断涌现,在顶会顶刊上频繁亮相,为众多研究方向提供了新的思路和方法。
如果你对BNN感兴趣,想要探索其更多的可能性,那么我给大家提供的12篇论文和相关代码将是绝佳的起点。它们详细阐述了BNN在不同领域的应用与创新。阅读这些论文,你将深入了解BNN的技术细节、创新点以及实际应用效果,为你的研究和实践提供有力的支持。
全部论文+开源代码需要的同学看文末
【论文1】Uncertainty quantification in multiaxial fatigue life prediction using Bayesian neural networks
Framework of BNN model.
1.方法
Flowchart of this study.
论文提出利用贝叶斯神经网络(BNN)量化多轴疲劳寿命预测中的不确定性。以多轴疲劳寿命预测模型中的疲劳参数作为 BNN 的输入,运用无 U 形转弯采样器(NUTS)和自动微分变分推断(ADVI)解决模型中的推断问题,进而对未知非比例加载路径和不同材料进行寿命预测。
2.创新点
Prediction results of D1_ADVI model within the same material.
-
引人BNN量化不确定性:首次将BNN用于多轴疲劳寿命预测的不确定性量化,为评估预测可靠性提供新途径,助力工程设计与安全评估。
-
多算法协同优化:利用NUTS和ADVI训练BNN,解决模型推断难题,提升模型对未知加载路径和不同材料疲劳寿命的预测能力。
-
创新输入参数选择:预测不同材料疲劳寿命时,引入(\sigma_{u})和(E)作为输入,考虑材料特性差异,提高预测准确性。
论文链接:https://www.sciencedirect.com/science/article/pii/S0013794424001243
【论文2】Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads
Architecture schema of MF-BayNet
1.方法
Bayesian Optimization for Hyperparameter Tuning
论文提出了一种创新的多保真框架,将贝叶斯神经网络(BNNs)与迁移学习(TL)相结合。该框架利用 BNNs 对网络权重的概率分布,通过蒙特卡洛采样获取预测均值和标准差,量化预测不确定性;同时运用迁移学习,先利用低保真数据进行初始训练,再用稀疏的高保真样本微调,融合不同保真度数据源的数据 。
2.创新点
Impact of aleatoric uncertainty on the model predictions
-
融合多保真数据:开发了一种全新的多保真框架,有效结合贝叶斯神经网络和迁移学习,充分利用不同保真度的数据,提升预测准确性。
-
不确定性量化:借助贝叶斯推断,MF - BayNet模型不仅给出预测结果,还能量化预测的不确定性,在不确定性量化和预测可靠性方面表现出色。
-
超越传统方法:该模型在整体准确性和对未知数据的鲁棒性上超越了传统的Co - Kriging方法,预测误差仅为其一半,标准差更低 。
论文链接:https://arxiv.org/pdf/2407.05684
关注下方《AI前沿速递》🚀🚀🚀
回复“C191”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏