KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)

本文列出了多个领域的最新研究成果,包括用于股票趋势预测的元学习方法DoubleAdapt,图对比学习的HomoGCL,以及类不平衡节点分类的GraphSHA。还涵盖了多模态联邦学习、强化学习在推荐系统中的应用,以及超图上的聚类加速表示学习等。此外,文章还讨论了文本分类的提示学习、时空图神经网络和因果结构学习等领域的新方法。
摘要由CSDN通过智能技术生成

下载地址:点我跳转

1. DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting

Code:None

Area:一种用于股票趋势预测增量学习的元学习方法

2. HomoGCL: Rethinking Homophily in Graph Contrastive Learning

Code:https://github.com/wenzhilics/HomoGCL

Area:图对比学习

3. GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification

Code:https://github.com/wenzhilics/GraphSHA

Area:类不平衡节点分类

4. FedMultimodal: A Benchmark For Multimodal Federated Learning

Code:https://github.com/usc-sail/fed-multimodal

Area:多模态联邦学习

5. Multi-Temporal Relationship Inference in Urban Areas

Code:https://github.com/agave233/SEENet

Area:位置之间的多时态关系推断、图学习

6. MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text Classification

Code:None

Area:提示学习少样本文本分类

7. ReLoop2: Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop

Code:https://xpai.github.io/ReLoop

Area:工业推荐系统

8. Reducing Exposure to Harmful Content via Graph Rewiring

Code:None

Area:Others

9. WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences

Code:https://github.com/THUDM/WebGLM

Area:基于通用语言模型 (GLM) 的网络增强型问答系统

10. CARL-G: Clustering-Accelerated Representation Learning on Graphs

Code:None

Area:图上的聚类加速表示学习

11. Localised Adaptive Spatial-Temporal Graph Neural Network

Code:None

Area:局部自适应时空图神经网络

12. SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and its Evaluation

Code:জনমত

Area:多域情感分析数据集

13. Virtual Node Tuning for Few-shot Node Classification

Code:None

Area:小样本节点分类

14. RankFormer: Listwise Learning-to-Rank Using Listwide Labels

Code:None

Area:Others

15. Modeling Dual Period-Varying Preferences for Takeaway Recommendation

Code:None

Area:外卖推荐系统

16. Efficient Centrality Maximization with Rademacher Averages

Code:None

Area:Others

17. Classification of Edge-dependent Labels of Nodes in Hypergraphs

Code:None

Area:超图

18. Local Boosting for Weakly-Supervised Learning

Code:https://github.com/rz-zhang/local_boost

Area:弱监督学习

19. Improving Conversational Recommendation Systems via Counterfactual Data Simulation

Code:https://github.com/RUCAIBox/CFCRS

Area:会话推荐系统

20. COMET: Learning Cardinality Constrained Mixture of Experts with Trees and Local Search

Code:None

Area:Others

21. Discovering Dynamic Causal Space for DAG Structure Learning

Code:None

Area:因果发现

22. Enhance Diffusion to Improve Robust Generalization

Code:None

Area:Others

23. Path-Specific Counterfactual Fairness for Recommender Systems

Code:None

Area:推荐系统

24. R-Mixup: Riemannian Mixup for Biological Networks

Code:None

Area:Others

25. Auto-Validate by-History: Auto-Program Data Quality Constraints to Validate Recurring Data Pipelines

Code:None

Area:Others

26. Densest Diverse Subgraphs: How to Plan a Successful Cocktail Party with Diversity

Code:None

Area:Others

27. Fresh Content Needs More Attention: Multi-funnel Fresh Content Recommendation

Code:None

Area:推荐系统

28. Towards Fair Disentangled Online Learning for Changing Environments

Code:None

Area:在线学习

29. DyGen: Learning from Noisy Labels via Dynamics-Enhanced Generative Modeling

Code:None

Area:https://github.com/night-chen/DyGen

30. Learning Strong Graph Neural Networks with Weak Information

Code:None

Area:图神经网络

31. Quantitatively Measuring and Contrastively Exploring Heterogeneity for Domain Generalization

Code:None

Area:域泛化

32. Sharpness-Aware Minimization Revisited: Weighted Sharpness as a Regularization Term

Code:https://github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers

Area:Others

33. Maximizing Neutrality in News Ordering

Code:None

Area:假新闻检测

34. Breaking the Curse of Quality Saturation with User-Centric Ranking

Code:None

Area:Others

35. Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies

Code:None

Area:可区分搜索索引

36. Text Is All You Need: Learning Language Representations for Sequential Recommendation

Code:None

Area:Others

37. Capturing Conversion Rate Fluctuation during Sales Promotions: A Novel Historical Data Reuse Approach

Code:None

Area:Others

38. Semi-Supervised Graph Imbalanced Regression

Code:None

Area:半监督图不平衡回归

39. Web-Scale Academic Name Disambiguation: the WhoIsWho Benchmark, Leaderboard, and Toolkit

Code:https://github.com/THUDM/WhoIsWho

Area:Others

40. Improving Training Stability for Multitask Ranking Models in Recommender Systems

Code:None

Area:https://github.com/tensorflow/recommenders/tree/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py

41. Rover: An online Spark SQL tuning service via generalized transfer learning

Code:None

Area:Others

42. Navigating Alignment for Non-identical Client Class Sets: A Label Name-Anchored Federated Learning Framework

Code:None

Area:联邦学习

43. Empowering Long-tail Item Recommendation through Cross Decoupling Network (CDN)

Code:None

Area:Others

44. Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining

Code:None

Area:Others

45. UCEpic: Unifying Aspect Planning and Lexical Constraints for Generating Explanations in Recommendation

Code:None

Area:Others

46. Joint Optimization of Ranking and Calibration with Contextualized Hybrid Model

Code:None

Area:Others

47. AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning

Code:https://github.com/LARS-research/AdaProp

Area:Others

48. Data-Efficient and Interpretable Tabular Anomaly Detection

Code:None

Area:异常检测

49. UA-FedRec: Untargeted Attack on Federated News Recommendation

Code:https://github.com/yjw1029/UA-FedRec

Area:Others

50. Spatial Clustering Regression of Count Value Data via Bayesian Mixture of Finite Mixtures

Code:https://github.com/pengzhaostat/MLG_MFM

Area:Others

51. Deep Weakly-supervised Anomaly Detection

Code:https://github.com/mala-lab/PReNet

Area:Others

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值