LLM反馈+生成式AI优化正成为人工智能领域炙手可热的研究焦点,它为生成式AI的进化带来了前所未有的契机,使模型性能得以全方位跃升!
生成式AI长期饱受生成内容质量参差不齐、与真实需求契合度欠佳、面对复杂任务力不从心等困扰。LLM反馈的介入宛如一场及时雨,为解决这些难题提供了新思路。TextGrad创新性地将AI系统视为计算图,利用“文本梯度”跨越传统数值梯度回传在非结构化信息处理上的障碍,实现对现代复杂AI系统的精准优化。LRP4RAG则敏锐洞察到检索增强生成(RAG)中存在的幻觉隐患,通过揭示幻觉与LLM内部状态的关联,提出高效检测方法,为生成式AI输出的可信度保驾护航。
LLM反馈与生成式AI优化的融合,极大地提升了生成式AI的实用性和可靠性,让模型能够更好地理解用户意图,生成高质量、符合需求的内容,成功突破过往局限。
我们精心筛选了12篇LLM反馈+生成式AI优化领域的顶尖论文,全面覆盖前沿算法与多元应用场景,助力各位科研工作者挖掘创新灵感,在学术道路上一路高歌猛进!
全部论文+开源代码需要的同学看文末!
【论文1】Optimizing generative AI by backpropagating language model feedback
| Overview of TextGrad
1.研究方法
| Illustrative implementation of TGD and TextGrad’s backpropagation.
论文提出的研究理论方法为 TextGrad 框架,该框架将 AI 系统建模为计算图,通过大型语言模型(LLM)生成的自然语言反馈 ——“文本梯度”,来实现对系统的反向传播优化。它能利用语言模型评估输出、评论并更新输入,以改进从提示词到输出结果等系统的各个部分 。
2.论文创新点
| Optimizing compound AI systems
-
非结构化信息优化:区别于传统神经网络以数值为媒介通信,TextGrad针对现代AI系统中常见的文本、代码、图像等非结构化信息进行优化,解决传统数值梯度回传在这类系统中不可行的问题 。
-
黑盒与非可微兼容:可适用于非可微分或黑盒目标函数,如LLM生成的评价、单元测试结果等,突破了传统优化方法的限制,具有更强的通用性与灵活性 。
-
多领域普适:无需为不同任务单独设计,在多种任务中展现出强大能力,从代码优化、解答优化、提示词优化,到放疗计划优化、分子生成等领域均可无缝适配 。
论文链接:https://www.nature.com/articles/s41586-025-08661-4
【论文2】LRP4RAG: Detecting Hallucinations in Retrieval-Augmented Generation via Layer-wise Relevance Propagation
: The architecture of our proposed method
1.研究方法
The distribution of Rprompt and Rresponse in box plot view
该论文提出的研究理论方法为 LRP4RAG ,其具体步骤为:先运用层级相关传播(LRP)算法,对 RAG 生成器输入与输出间的相关性展开计算 ;接着针对相关性矩阵开展提取与重采样操作;最后将处理后的相关性数据输入多个分类器,以此判断输出内容是否存在幻觉。
2.论文创新点
Comparison of LRP4RAG and baselines on RAGTruth dataset.
-
提出新检测需求:明确指出RAG存在幻觉问题且检测需求迫切。虽然RAG能缓解大语言模型的幻觉,但仍无法杜绝。此前研究未系统剖析RAG幻觉发生的条件,该研究首次强调此问题,为后续探索奠定基础。
-
揭示内在关联:深入分析RAG幻觉与LLM内部状态的联系,发现LLM输入和输出的相关性与幻觉显著相关。通过实验从多视角对比正常和幻觉样本的相关性分布,如用箱线图、折线图和热图展示差异,为幻觉检测提供了新的理论依据。
-
创新检测方法:提出基于反向传播的LRP4RAG幻觉检测方法。该方法利用LRP计算相关性,经重采样处理后输入分类器判断是否存在幻觉。实验表明,LRP4RAG在检测Llama-2-7b-chat和Llama-2-13b-chat的RAG幻觉时,性能超越主流基线方法。
论文链接:https://arxiv.org/pdf/2408.15533
关注下方《AI前沿速递》🚀🚀🚀
回复“C202”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏