55. 跳跃游戏

这篇博客探讨了一道编程题目,涉及贪心算法的应用。作者指出,该问题的关键不在于模拟每个步骤,而是计算每次跳跃所能覆盖的最大范围。通过在每一步更新最大覆盖范围,若能覆盖到终点则表明可以到达终点。博客还提到了使用三目运算符与`max`函数在效率上的差异,并对此感到疑惑。

✅做题思路or感想

这一题说是用贪心,我个人更倾向于是脑筋急转弯or单纯考察思维

这一题的大忌就是模拟一个人从初始点一个个跳格子,很容易把自己绕进去

这类题的真正思路应该是计算可跳的覆盖范围

如果可跳的覆盖范围覆盖了终点,则说明可以跳到终点

如果循环遍历结束了,覆盖范围都没有覆盖到终点,则说明不可言跳到终点

而此题关键的步骤是:每移动一个单位,就更新最大覆盖范围

class Solution {
public:
    bool canJump(vector<int>& nums) {
        if (nums.size() == 1)return true;	//防止奇怪的测试用例
        int cover = nums[0];	//从起点开始跳,所以开始的覆盖范围是由起点而定
        for (int i = 0; i <= cover; i++) {
            //更新最大覆盖范围
            cover = max(cover, nums[i] + i);
            //覆盖了终点,则return true
            if (cover >= nums.size() - 1)return true;
        }
        //都遍历完了还没覆盖,则return false
        return false;
    }
};

这一题有一个让我百思不得其解的一个疑问:如果把上面的max函数改成三目运算符,则运行速度会翻倍,但是在前几题中用三目运算符时,运行效率又是优于max函数,真的是很奇怪了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值