45. 跳跃游戏 II

使用最大可移动距离解决跳跃游戏优化算法
这篇博客探讨了一种优化算法,用于解决跳跃游戏中最小步数达到终点的问题。作者提出的关键思路是通过计算最大可移动距离而非逐次模拟小人的跳跃。在代码实现中,定义了cover和maxCover分别表示当前位置和两步后的最大可移动距离,并通过迭代更新这两个值,直到达到终点。此方法提高了问题的求解效率。

✅做题思路or感想

这一题的主要思路是利用最大可移动距离来解题,而不是模拟一个小人一步步往前跳

多的不说了,全在代码里了

class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1)return 0;	//防止奇怪的测试用例
        //cover代表的是在当前位置上走一步的最大可移动距离
        //maxCover代表的是在当前位置上走两步的最大可移动距离
        int cover = 0, maxCover = 0;
        int step = 0;	//记录步数
        //i代表的是在可移动范围内的遍历
        for (int i = 0; i <= cover; i++) {
            //时刻更新下一步能最多走多远
            maxCover = max(maxCover, nums[i] + i);
            //如果i能到达nums.size() - 1,说明这一步的最大可移动距离已经覆盖到了终点,可以停手了
            if (i == nums.size() - 1)break;
            //如果没有到终点,并且还走到了当前的最大可移动距离的尽头
            //则要支付出一个步数,来拓展最大可移动距离!
            if (i == cover) {
                cover = maxCover;
                step++;
            }
        }
        return step;
    }
};
### 跳跃游戏 II算法实现 跳跃游戏 II 是一道经典的贪心算法问题,目标是从数组的第一个位置跳到最后一个位置,并返回最少的跳跃次数。以下是基于 Go 语言的解决方案。 #### 算法思路 该问题可以通过维护当前能够覆盖的最大范围来解决。每次当遍历的位置达到上一次记录的最大边界时,更新最大边界并增加跳跃次数[^1]。这种方法的核心在于利用局部最优解(即每一步尽可能远地跳跃)来获得全局最优解。 #### 实现代码 (Go) ```go package main import ( "fmt" ) func jump(nums []int) int { if len(nums) <= 1 { return 0 } jumps := 0 // 记录跳跃次数 currentEnd := 0 // 当前区间的最右端 farthest := 0 // 可以到达的最远距离 for i := 0; i < len(nums)-1; i++ { // 更新能到达的最远距离 if nums[i]+i > farthest { farthest = nums[i] + i } // 到达当前区间边界时触发跳跃 if i == currentEnd { jumps++ currentEnd = farthest // 如果已经可以到达终点,则提前结束循环 if currentEnd >= len(nums)-1 { break } } } return jumps } func main() { nums := []int{2, 3, 1, 1, 4} // 测试数据 fmt.Println(jump(nums)) // 输出最小跳跃次数 } ``` 上述代码通过 `jumps` 来计数跳跃次数,`currentEnd` 表示当前步所能到达的最远索引,而 `farthest` 则表示下一步可能到达的最远索引。每当遍历到 `currentEnd` 时,就执行一次跳跃操作并将新的边界设置为 `farthest`。 #### 复杂度分析 - **时间复杂度**: O(n),其中 n 是输入数组的长度。因为只需要遍历整个数组一次。 - **空间复杂度**: O(1),仅使用了常量级额外存储空间。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值