583. 两个字符串的删除操作【动态规划】【包教包会】

✅做题思路or感想

同是一刷没有理解透彻的题,二刷终于理解透了。字符串匹配的题都要用最后一步的思考角度去思考,从最后部分开始思考

dp数组含义

dp[i][j]是从下标0开始长度为i和长度为j的两个字符串做到相同所需的最小步数

💡递推公式

从最后一步思考,以单词A和单词B为例,从完整的A和B的匹配思考

当A的最后一位和B的最后一位不匹配时,有三种做法:反正A的最后一位和B的最后一位在一起已经用不了了,所以要么删A,要么删B,要么俩一起删了,就是不能让他俩最后一位在一起

  • 删A,则有dp[i][j] = dp[i - 1][j] + 1,加一个删除操作数
  • 删B,则有dp[i][j] = dp[i][j - 1] + 1,加一个删除操作数
  • 两个一起删,则有dp[i][j] = dp[i - 1][j - 1] + 2,加两个删除操作数

而当A的最后一位和B的最后一位匹配时,则缩短匹配范围(因为这两位已经成功匹配了,再匹配就没意义了),则有dp[i][j] = dp[i - 1][j - 1],再次强调这里的意思不是删除了最后两位,而是缩短匹配范围(表现上就是这里没有+2)

初始化

字符串问题的初始化要从空字符串开始思考

还是单词A,单词B为例

  • 如果A为空字符串,则B要把B串全删了才能与之相等,所以操作数就是B单词的长度
  • 如果B为空字符串,则A要全删了才能与之相等,所以操作数为A单词的长度

遍历顺序

从递推公式知从小推大,所以遍历顺序为正序

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>>dp (word1.size() + 1, vector<int>(word2.size() + 1));
        //初始化
        //这里下标为0即是代表了空字符串,不理解的想想上面dp数组的含义
        for (int i = 0; i <= word1.size(); ++i) {
            dp[i][0] = i;
        }
        for (int j = 0; j <= word2.size(); ++j) {
            dp[0][j] = j;
        }
        for (int i = 1; i <= word1.size(); ++i) {
            for (int j = 1; j <= word2.size(); ++j) {
                if (word1[i - 1] != word2[j - 1]) { //若不匹配,则进行删除操作
                    dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]) + 1, dp[i - 1][j - 1] + 2);
                } else {	//若匹配,则缩短匹配范围
                    dp[i][j] = dp[i - 1][j - 1];
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值