✅做题思路or感想
同是一刷没有理解透彻的题,二刷终于理解透了。字符串匹配的题都要用最后一步的思考角度去思考,从最后部分开始思考
dp
数组含义
dp[i][j]
是从下标0开始长度为i
和长度为j
的两个字符串做到相同所需的最小步数
💡递推公式
从最后一步思考,以单词A和单词B为例,从完整的A和B的匹配思考
当A的最后一位和B的最后一位不匹配时,有三种做法:反正A的最后一位和B的最后一位在一起已经用不了了,所以要么删A,要么删B,要么俩一起删了,就是不能让他俩最后一位在一起
- 删A,则有
dp[i][j] = dp[i - 1][j] + 1
,加一个删除操作数 - 删B,则有
dp[i][j] = dp[i][j - 1] + 1
,加一个删除操作数 - 两个一起删,则有
dp[i][j] = dp[i - 1][j - 1] + 2
,加两个删除操作数
而当A的最后一位和B的最后一位匹配时,则缩短匹配范围(因为这两位已经成功匹配了,再匹配就没意义了),则有dp[i][j] = dp[i - 1][j - 1]
,再次强调这里的意思不是删除了最后两位,而是缩短匹配范围(表现上就是这里没有+2)
初始化
字符串问题的初始化要从空字符串开始思考
还是单词A,单词B为例
- 如果A为空字符串,则B要把B串全删了才能与之相等,所以操作数就是B单词的长度
- 如果B为空字符串,则A要全删了才能与之相等,所以操作数为A单词的长度
遍历顺序
从递推公式知从小推大,所以遍历顺序为正序
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>>dp (word1.size() + 1, vector<int>(word2.size() + 1));
//初始化
//这里下标为0即是代表了空字符串,不理解的想想上面dp数组的含义
for (int i = 0; i <= word1.size(); ++i) {
dp[i][0] = i;
}
for (int j = 0; j <= word2.size(); ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= word1.size(); ++i) {
for (int j = 1; j <= word2.size(); ++j) {
if (word1[i - 1] != word2[j - 1]) { //若不匹配,则进行删除操作
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]) + 1, dp[i - 1][j - 1] + 2);
} else { //若匹配,则缩短匹配范围
dp[i][j] = dp[i - 1][j - 1];
}
}
}
return dp[word1.size()][word2.size()];
}
};