如何在weka中添加自己的算法

在weka中添加自己的算法
也就是达到下面的效果,myAlgo是自己写的算法所在的包,myNB是自己所写的算法代码。
这里写图片描述
实现上述效果,主要需要两个配置过程。具体过程如下:
1. 在weka项目中新建一个package,这里命名为weka.classifiers.myAlgo,然后在myAlgo中新建一个java文件,这里命名为myNB(这里的代码是直接拷贝weka自带的NaiveBayes代码的,src/weka.classifiers.NaiveBayes)。
2. 然后是两个配置过程:
首先找到weka.gui中的GenericObjectEditor.props文件,在# Lists the Classifiers-Packages I want to choose from添加weka.classifiers.myAlgo,\。
然后找到weka.gui中的GenericObjectEditor.props文件,在# Lists the Classifiers I want to choose from中添加weka.classifiers.myAlgo.myNB,\。注意,这里只需要配置一次即可,后面再在myAlgo中添加其他算法时不需要再在这里配置了。

在Java使用Weka的Logistic算法,你需要按照以下步骤进行操作: 1. 首先,确保你已经装了Weka库。你可以从Weka官方网站(https://www.cs.waikato.ac.nz/ml/weka/)下载并安装Weka。 2. 在Java项目导入Weka库。你可以通过在你的项目添加Weka的JAR文件来实现。具体的步骤可以根据你使用的IDE来进行操作。 3. 创建一个实例对象,用于加载和处理数据。例如,你可以使用`weka.core.Instances`类来加载数据集,代码如下: ```java import weka.core.Instances; import java.io.BufferedReader; import java.io.FileReader; // 加载数据集 BufferedReader reader = new BufferedReader(new FileReader("path/to/your/dataset.arff")); Instances data = new Instances(reader); reader.close(); data.setClassIndex(data.numAttributes() - 1); // 设置类别属性 ``` 4. 创建Logistic分类器对象并进行训练。你可以使用`weka.classifiers.functions.Logistic`类来创建Logistic分类器,并使用数据进行训练,代码如下: ```java import weka.classifiers.functions.Logistic; // 创建Logistic分类器对象 Logistic classifier = new Logistic(); // 训练分类器 classifier.buildClassifier(data); ``` 5. 进行预测。你可以使用训练好的Logistic分类器对新数据进行预测,代码如下: ```java import weka.core.Instance; // 创建新的实例 Instance newInstance = new DenseInstance(data.numAttributes()); newInstance.setDataset(data); // 设置实例的属性值 // 进行预测 double prediction = classifier.classifyInstance(newInstance); System.out.println("预测结果:" + prediction); ``` 这些是在Java使用Weka的Logistic算法的基本步骤。你可以根据自己的需求进行进一步的调整和优化。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值