BZOJ3864: Hero meet devil DP套DP

7 篇文章 0 订阅
2 篇文章 0 订阅

题意:给出字符串S,对于每一个i,问有多少个长度为m的字符串与S的最长公共子序列长度为i
|S|<=15. m<= 1000.
DP的瓶颈在于如果考虑保存LCP长度或者结束位置的话,会存在状态相同的串而转移方式不同。为了消除后效性,需要将最后一位与S所有位的匹配状态都记录下来。
考虑LCP的转移方程: f[i][j]=f[i-1][j-1]+1 (i==j); 或
f[i][j]=max(f[i-1][j],f[i][j-1]) (i!=j);
转移如同二维矩阵,S的每一位是一列,每向T后添加一个字符,就如同向下延伸一行。
观察发现相邻两个数最多差1,因此将每一行差分即可得到01串,可以用来表示状态。
对于转移,对于已知的一行,可以用上面的方程预处理出添加一个字符后下一行会变成什么。因此对于T的每一位枚举是什么字符,将方案数转移到后继状态即可。
由于进行了差分,一个状态中1的个数就是实际的LCP长度,统计答案即可。
代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define move __modded_move
#define bit(x,pos) ((x)>>(pos)&1)
#define set(x,pos) ((x)|=(1u<<(pos)))
using namespace std;
int t,n,m;
char s[20];
char val[128];
size_t trans[1<<15][4];
size_t maxn;
const size_t mob=1000000007u;
void getlink()
{
    int f[20],g[20];
    for(size_t i=0;i<=maxn;++i)
    {
        f[0]=bit(i,0);
        for(int j=1;j<n;++j)
        f[j]=f[j-1]+bit(i,j);
        for(int j=0;j<4;++j)
        {
            g[0]=(s[0]==j)?1:f[0];
            for(int k=1;k<n;++k)
            g[k]=(s[k]==j)?f[k-1]+1:max(f[k],g[k-1]);
            size_t& res=trans[i][j]=0;
            if(g[0]) set(res,0);
            for(int k=1;k<n;++k)
            if(g[k]!=g[k-1]) set(res,k);
        }
    }
}
size_t f[1<<15],g[1<<15],*last=f,*kre=g;
inline void move(size_t& x)
{
    x<mob?x:x-=mob;
}
size_t ans[20];
size_t cnt[1<<15];
int main()
{
    scanf("%d",&t);
    val['A']=0,val['C']=1,val['G']=2,val['T']=3;
    for(size_t i=1;i<(1<<15);++i)
    cnt[i]=cnt[i&i-1]+1;
    while(t--)
    {
        scanf("%s%d",s,&m);n=strlen(s);
        maxn=(1<<n)-1;
        for(int i=0;i<n;++i) s[i]=val[s[i]];
        getlink();
        memset(last,0,maxn+1<<2);
        last[0]=1;
        for(int i=1;i<=m;++i)
        {
            memset(kre,0,maxn+1<<2);
            for(int j=0;j<4;++j)
            {
                for(size_t k=0;k<=maxn;++k)
                move(kre[trans[k][j]]+=last[k]);
            }
            swap(last,kre);
        }
        memset(ans,0,n+1<<2);
        for(size_t i=0;i<=maxn;++i)
        {
            move(ans[cnt[i]]+=last[i]);
        }
        for(int i=0;i<=n;++i)
        printf("%d\n",ans[i]);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值