题意:给出字符串S,对于每一个i,问有多少个长度为m的字符串与S的最长公共子序列长度为i
|S|<=15. m<= 1000.
DP的瓶颈在于如果考虑保存LCP长度或者结束位置的话,会存在状态相同的串而转移方式不同。为了消除后效性,需要将最后一位与S所有位的匹配状态都记录下来。
考虑LCP的转移方程: f[i][j]=f[i-1][j-1]+1 (i==j); 或
f[i][j]=max(f[i-1][j],f[i][j-1]) (i!=j);
转移如同二维矩阵,S的每一位是一列,每向T后添加一个字符,就如同向下延伸一行。
观察发现相邻两个数最多差1,因此将每一行差分即可得到01串,可以用来表示状态。
对于转移,对于已知的一行,可以用上面的方程预处理出添加一个字符后下一行会变成什么。因此对于T的每一位枚举是什么字符,将方案数转移到后继状态即可。
由于进行了差分,一个状态中1的个数就是实际的LCP长度,统计答案即可。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define move __modded_move
#define bit(x,pos) ((x)>>(pos)&1)
#define set(x,pos) ((x)|=(1u<<(pos)))
using namespace std;
int t,n,m;
char s[20];
char val[128];
size_t trans[1<<15][4];
size_t maxn;
const size_t mob=1000000007u;
void getlink()
{
int f[20],g[20];
for(size_t i=0;i<=maxn;++i)
{
f[0]=bit(i,0);
for(int j=1;j<n;++j)
f[j]=f[j-1]+bit(i,j);
for(int j=0;j<4;++j)
{
g[0]=(s[0]==j)?1:f[0];
for(int k=1;k<n;++k)
g[k]=(s[k]==j)?f[k-1]+1:max(f[k],g[k-1]);
size_t& res=trans[i][j]=0;
if(g[0]) set(res,0);
for(int k=1;k<n;++k)
if(g[k]!=g[k-1]) set(res,k);
}
}
}
size_t f[1<<15],g[1<<15],*last=f,*kre=g;
inline void move(size_t& x)
{
x<mob?x:x-=mob;
}
size_t ans[20];
size_t cnt[1<<15];
int main()
{
scanf("%d",&t);
val['A']=0,val['C']=1,val['G']=2,val['T']=3;
for(size_t i=1;i<(1<<15);++i)
cnt[i]=cnt[i&i-1]+1;
while(t--)
{
scanf("%s%d",s,&m);n=strlen(s);
maxn=(1<<n)-1;
for(int i=0;i<n;++i) s[i]=val[s[i]];
getlink();
memset(last,0,maxn+1<<2);
last[0]=1;
for(int i=1;i<=m;++i)
{
memset(kre,0,maxn+1<<2);
for(int j=0;j<4;++j)
{
for(size_t k=0;k<=maxn;++k)
move(kre[trans[k][j]]+=last[k]);
}
swap(last,kre);
}
memset(ans,0,n+1<<2);
for(size_t i=0;i<=maxn;++i)
{
move(ans[cnt[i]]+=last[i]);
}
for(int i=0;i<=n;++i)
printf("%d\n",ans[i]);
}
return 0;
}