BZOJ4899: 记忆的轮廓 期望DP 决策单调性

题意:http://www.lydsy.com/JudgeOnline/problem.php?id=4899
容易发现树形结构是骗人的。。。走到错误分叉的影响是可以预处理的常数,所以就相当于一个序列从头走到尾的问题,那么可以预处理出对于每个点若在这里存档则走到其他点的期望步数
很容易想到f[i][j]表示走到第i个点,已经用了j个存档机会的最优值,那么枚举i前面的k进行转移,就是o(n*n*p)的复杂度。
然后你看这个方程长得这么simple一看就是要优化的对不对。。。观察一下上面说的每个存档点走到其他点期望步数的递推式,发现若从i走到j变为从i走到j+1,数值会乘以j的儿子数再加上一个只与j有关的数,而不受i影响。那么考虑对于两个决策点,随着待决策点的右移,离得远的那一个一定会增长得越来越快,所以决策点单调右移。于是就可以把复杂度降为o(n*log(n)*p)了。

#include<cstdio>
#include<vector>
#include<utility>
#include<algorithm>
#define gm 701
using namespace std;
int T;
int n,m,p;
vector<int> s[1501];
double nex[1501],dis[gm][gm],f[gm][gm];
void dfs(int x)
{
    int d=s[x].size();
    if(!d) {nex[x]=1; return;}
    nex[x]=0;
    for(int i=0;i<d;++i)
    {
        int y=s[x][i]; dfs(y);
        if(y>n) nex[x]+=(nex[y]+1)/d;
    }
}
typedef pair<int,int> pr;
vector<pr> kon[gm];
#define F(i,j,k) (f[i][j]+dis[i][k])
void push(int x,int y)
{
    vector<pr>& kre=kon[y];
    int top=kre.size();
    if(top==1) {kre.push_back(pr(x,n)); return;}
    if(F(x,y,n)-F(kre[top-1].first,y,n)>1e-6) return;
    while(top!=1)
    {
        int va=kre[top-1].first,le=max(kre[top-2].second,x)+1;
        if(F(va,y,le)-F(x,y,le)>1e-6) --top,kre.pop_back();
        else break;
    }
    if(top==1) {kre.push_back(pr(x,n)); return;}
    int l=kre[top-2].second+1,r=n,v=kre[top-1].first;
    while(l!=r)
    {
        int mid=l+r+1>>1;
        if(F(v,y,mid)-F(x,y,mid)>1e-6) r=mid-1;
        else l=mid;
    }
    kre[top-1].second=l;
    kre.push_back(pr(x,n));
}
struct cmp{bool operator() (const pr &a,int b) const {return a.second<b;}};
void calc(int x,int y)
{
    vector<pr>& kre=kon[y-1];
    if(kre.size()==1) return;
    vector<pr>::iterator it=lower_bound(kre.begin(),kre.end(),x,cmp());
    f[x][y]=F(it->first,y-1,x);
    push(x,y);
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&p);
        for(int i=1;i<=m;++i) s[i].clear();
        for(int i=1;i<n;++i) s[i].push_back(i+1);
        for(int i=1;i<=p;++i) {kon[i].clear(); kon[i].push_back(pr(0,0));}
        for(int i=1;i<=m-n;++i)
        {
            int u,v; scanf("%d%d",&u,&v);
            s[u].push_back(v);
        }
        dfs(1);
        for(int i=1;i<=n;++i)
        {
            dis[i][i]=0;
            for(int j=i+1;j<=n;++j)
            dis[i][j]=s[j-1].size()*(dis[i][j-1]+nex[j-1])+1;
        }
        f[1][1]=0; push(1,1);
        for(int i=2;i<=n;++i)
        for(int j=min(p,i);j>=2;--j)
        calc(i,j);
        printf("%.4lf\n",f[n][p]);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值