【BZOJ4899】记忆的轮廓

【题目链接】

【思路要点】

  • 预处理出 costi,j c o s t i , j 表示存档点 i,j i , j 之间不存在其它存档点时,从 i i 走到j的期望步数。

  • 问题可以由DP解决:记 dpi,j d p i , j 表示从初始状态到第一次达到已经设置了 i i 个存档点,第i个存档点设置在了 j j 处的期望步数。

  • 显然有

    dp1,1=0,dp1,i=+(i>1)

    dpi,j=minj1k=1{dpi1,k+costk,j}(i>1) d p i , j = m i n k = 1 j − 1 { d p i − 1 , k + c o s t k , j } ( i > 1 )

  • 我们发现 cost c o s t 数组是满足四边形不等式的,

    即对于任意 j<k<i<r j < k < i < r ,有 costj,r+costk,i>costj,i+costk,r c o s t j , r + c o s t k , i > c o s t j , i + c o s t k , r

  • 考虑第 x x 层的决策点j,k,若对于 i i 而言,决策点k已经优于决策点 j j

    dpx1,j+costj,i>dpx1,k+costk,i

    那么 costj,icostk,i>dpx1,kdpx1,j c o s t j , i − c o s t k , i > d p x − 1 , k − d p x − 1 , j

    又由 costj,r+costk,i>costj,i+costk,r c o s t j , r + c o s t k , i > c o s t j , i + c o s t k , r

    因此 costj,rcostk,r>costj,icostk,i c o s t j , r − c o s t k , r > c o s t j , i − c o s t k , i

    因此 costj,rcostk,r>dpx1,kdpx1,j c o s t j , r − c o s t k , r > d p x − 1 , k − d p x − 1 , j

    dpx1,j+costj,r>dpx1,k+costk,r d p x − 1 , j + c o s t j , r > d p x − 1 , k + c o s t k , r

    因此此时对于任何 r>i r > i ,决策点 k k 均优于决策点j

  • 用决策单调性分治优化DP即可。

  • 时间复杂度 O(N2LogN+M) O ( N 2 L o g N + M )

【代码】


#include<bits/stdc++.h>

using namespace std;
const int MAXN = 705;
const int MAXM = 1505;
const double INF = 1e99;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
  x = 0; int f = 1;
  char c = getchar();
  for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
  for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
  x *= f;
}
template <typename T> void write(T x) {
  if (x < 0) x = -x, putchar('-');
  if (x > 9) write(x / 10);
  putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
  write(x);
  puts("");
}
int n, m, p;
vector <int> a[MAXM];
double steps[MAXM], cost[MAXN][MAXN], dp[MAXN][MAXN];
void solve(int depth, int l, int r, int sl, int sr) {
  int mid = (l + r) / 2, home = sl;
  dp[depth][mid] = INF;
  for (int i = sl; i <= min(sr, mid - 1); i++) {
      double tmp = dp[depth - 1][i] + cost[i][mid];
      if (tmp < dp[depth][mid]) {
          dp[depth][mid] = tmp;
          home = i;
      }
  }
  if (l < mid) solve(depth, l, mid - 1, sl, home);
  if (mid < r) solve(depth, mid + 1, r, home, sr);
}
void work(int pos, int fa) {
  if (pos <= n) {
      steps[pos] = a[pos].size() + 1;
      for (unsigned i = 0; i < a[pos].size(); i++) {
          work(a[pos][i], pos);
          steps[pos] += steps[a[pos][i]];
      }
  } else {
      if (a[pos].size() == 1) {
          steps[pos] = 1;
          return;
      }
      steps[pos] = 0;
      for (unsigned i = 0; i < a[pos].size(); i++)
          if (a[pos][i] != fa) {
              work(a[pos][i], pos);
              steps[pos] += steps[a[pos][i]] + 1;
          }
      steps[pos] /= a[pos].size() - 1;
  }
}
int main() {
  int T; read(T);
  while (T--) {
      read(n), read(m), read(p);
      for (int i = 1; i <= m; i++)
          a[i].clear();
      for (int i = n + 1; i <= m; i++) {
          int x, y; read(x), read(y);
          a[x].push_back(y);
          a[y].push_back(x);
      }
      for (int i = 1; i <= n; i++)
          work(i, 0);
      for (int i = 1; i <= n; i++) {
          cost[i][i] = 0;
          for (int j = i + 1; j <= n; j++) {
              cost[i][j] = cost[i][j - 1] + 1;
              for (unsigned k = 0; k < a[j - 1].size(); k++)
                  cost[i][j] += cost[i][j - 1] + 1 + steps[a[j - 1][k]];
          }
      }
      dp[1][1] = 0;
      for (int i = 2; i <= n; i++)
          dp[1][i] = INF;
      for (int i = 2; i <= p; i++)
          solve(i, 1, n, 1, n);
      printf("%.4lf\n", dp[p][n]);
  }
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值