AtCoder Regular Contest 176(ARC176)A、B

本文详细解释了AtCoderRegularContest176中的A题MatrixAgain和B题SimpleMath4的解题思路,涉及矩阵填充策略和数学计算技巧。A题要求在方格中合理放置1以满足特定条件,B题则关注整数运算求个位数的规律。
摘要由CSDN通过智能技术生成

题目:AtCoder Regular Contest 176 - tasks
官方题解:AtCoder Regular Contest 176 - editorial
参考:atcoder regular 176 (ARC176) A、B题解


A - 01 Matrix Again

题意

给一个n×n的方格,给出m个坐标(x,y)×m,在方格中选择一些格子填入1,要求填完后每行有m个1,每列有m个1,并且之前给出的坐标对应方格中也是1,输出一种可能的方案。

思路(依照官方题解)

容易得出一共要选n×m个格子
当m=1时
需要选n个格子,每行每列都要一个1,其中有一个格子坐标给定为(x0, y0)。如何保证每行每列一个呢?可以让行坐标x+列坐标y(模n)固定,x遍历0~(n - 1)时,y也遍历0~(n - 1)。那x+y的和怎么选呢?显然只能是x0 + y0
于是可以令k = (x0 + y0) % n,x遍历0~(n - 1),y = (k - x + n) % n。
当m!=1时
既然固定一个x + y = k能选出n个格子,并且保证每行每列一个,那么能不能选出m个不同的k,达到每行每列m个呢?答案是可以的,当k互不相同时,每个k选出的n个点和其他k选出的不会有交集。
现在就只剩怎么选出m个不同的k,使得给定的那些点在我们会选出的点集里了。
如果给定的点里有(xi, yi),显然k = (xi + yi) % n是一定要选的。但是一个k也可能对应多个给定的点,所以只要对所有给定点(xi, yi),选上k = (xi + yi) % n(就选一次不能重复),剩下的没选过的数中随便挑几个凑够m个即可。

代码
#include <vector>
#include <iostream>
#include <cstdio>
#include <ctime> 
#include <algorithm>
using namespace std;

typedef long long ll;
const int N = 1e5 + 5;

int vis[N];
vector<int> setk; 

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	
	int n, m;
	cin >> n >> m;
	for (int i = 0; i < m; i++)
	{
		int x, y;
		cin >> x >> y;
		vis[(x + y - 2) % n] = 1;
	}
	for (int i = 0; i < n; i++)
		if (vis[i]) setk.push_back(i);
	for (int i = 0; i < n; i++)
		if (!vis[i] && setk.size() < m) setk.push_back(i);
	cout << n * m << endl; 
	for (int i = 0; i < m; i++)
	{
		for (int j = 0; j < n; j++)
		{
			int x = j + 1, y = (setk[i] - j + n) % n + 1;
			cout << x << ' ' << y << endl;
		}
	}  
	return 0;
}

B - Simple Math 4

思路(官方题解)

  1. n >= m时:
    在这里插入图片描述(注意一定是n >= m,这样2n-m才是整数)
    这样把n变小
  2. n < m时:
    当2n = 2m - 2k时(也就是n = k = m - 1),答案为0
    否则有2n < 2m - 2k,答案就是2n % 10

代码

容易发现2n最后一位是2、4、8、6循环的,得到n之后可以直接按周期算出个位数

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

typedef long long ll;
const int N = 2e5 + 5;

int re[4] = {2, 4, 8, 6};

int main()
{
	int T; 
	cin >> T;
	while (T--)
	{
		ll m, n, k;
		cin >> n >> m >> k;
		if (n >= m) n = n - (n - m) / (m - k) * (m - k);
		if (n >= m) n -= m - k;
		if (n == m - 1 && k == m - 1) cout << 0 << endl;
		else cout << re[(n - 1) % 4] << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值