(零)重要问题

  1. lightgbm, xgboost RF和GBDT的异同

(对于ID3,C4.5,CART也要了解,对于xgb的算法原理要充分理解,比如损失函数的推导过程,为什么要使用二阶泰勒展开。最好有一些调参经验)

  1. svm损失函数推导

  2. 朴素贝叶斯公式推导与实现

  3. 处理不平衡常用方法

  4. 卷积层相比FC层有哪些优势?

  5. 非线性分类算法有哪些

  6. 如何判断一个算法是线性的还是非线性的?

  7. stacking/boosting/bagging的区别

  8. 手动实现堆排序

  9. 求AUC

  10. L1和L2的区别

  11. 实现快排

  12. LR的实现,优点,如何并行,特征有共线性会怎么样?

  13. pca和lda

  14. 常见激活函数的优缺点

  15. 从方差和偏差的角度比较bagging和boosting

  16. 经验风险、期望风险、结构风险

  17. SVM与LR的区别

  18. 手写kmeans

  19. 实际场景下做softmax容易出现一些问题,怎么解决

  20. 进程和线程的区别

  21. Python/C++多线程,多进程如何使用

  22. Python迭代器,装饰器

  23. Bootstrap抽样

  24. 特征选择方法

  25. 野指针是什么意思

  26. 64匹马,八个赛道,找出最快的四匹,最坏情况下最少要比多少次(更常见的是25匹马,5个赛道找出最快的3匹)。

  27. 12个小球,其中有一个与其他的重量不一样,给你一个天平,最坏情况下最少称多少次可以找出重量不同的小球。

  28. 1000杯水中有一瓶是毒药,小老鼠喝一滴一小时就会死,给你10只小老鼠,在一小时内找出这瓶水 。

  29. P-R曲线和ROC曲线的区别

  30. 什么是凸问题?

  31. 常见的凸优化方法?

  32. CNN/RNN/LSTM的原理

  33. 从方差,偏差,噪声的角度解释泛化误差

  34. 特征工程相关。比如如何处理类别特征?onehot,tfidf会出现什么问题之类。

  35. 词嵌入embedding相关知识

  36. 梯度爆炸/梯度消失

  37. 池化层,卷积层的作用

  38. dropout(训练和测试阶段分别如何处理)

  39. MLE,MAP和贝叶斯估计的区别

  40. DNN反向传播的推导

  41. LR为什么用交叉熵而不是MSE?

  42. 为什么LR权重可以全部初始化为0,NN不行

  43. 常见的几个聚类算法

  44. 判别式模型和生成式模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值