(对于ID3,C4.5,CART也要了解,对于xgb的算法原理要充分理解,比如损失函数的推导过程,为什么要使用二阶泰勒展开。最好有一些调参经验)
-
svm损失函数推导
-
朴素贝叶斯公式推导与实现
-
处理不平衡常用方法
-
卷积层相比FC层有哪些优势?
-
非线性分类算法有哪些
-
如何判断一个算法是线性的还是非线性的?
-
手动实现堆排序
-
求AUC
-
L1和L2的区别
-
实现快排
-
LR的实现,优点,如何并行,特征有共线性会怎么样?
-
pca和lda
-
从方差和偏差的角度比较bagging和boosting
-
经验风险、期望风险、结构风险
-
SVM与LR的区别
-
手写kmeans
-
实际场景下做softmax容易出现一些问题,怎么解决
-
进程和线程的区别
-
Python/C++多线程,多进程如何使用
-
Python迭代器,装饰器
-
Bootstrap抽样
-
特征选择方法
-
野指针是什么意思
-
64匹马,八个赛道,找出最快的四匹,最坏情况下最少要比多少次(更常见的是25匹马,5个赛道找出最快的3匹)。
-
12个小球,其中有一个与其他的重量不一样,给你一个天平,最坏情况下最少称多少次可以找出重量不同的小球。
-
1000杯水中有一瓶是毒药,小老鼠喝一滴一小时就会死,给你10只小老鼠,在一小时内找出这瓶水 。
-
P-R曲线和ROC曲线的区别
-
什么是凸问题?
-
常见的凸优化方法?
-
CNN/RNN/LSTM的原理
-
从方差,偏差,噪声的角度解释泛化误差
-
特征工程相关。比如如何处理类别特征?onehot,tfidf会出现什么问题之类。
-
词嵌入embedding相关知识
-
梯度爆炸/梯度消失
-
池化层,卷积层的作用
-
MLE,MAP和贝叶斯估计的区别
-
DNN反向传播的推导
-
为什么LR权重可以全部初始化为0,NN不行
-
常见的几个聚类算法