DIN

论文链接:https://arxiv.org/pdf/1706.06978.pdf

介绍

在这里插入图片描述
上图展示的就是点击算法运行的大概框架,在很多时候点击预测与商品推荐是一样的。点击预测的算法通过用户的点击行为和被点击的广告的特征不断优化结果。
在很多的点击率预测的方法中,将大量的特征数据进行降维编程一个低维的嵌入向量。再将低维的嵌入向量进行转换将其固定维某一个固定维度的向量。而本篇文章DIN(Deep interset Network)通过捕捉用户的行为和广告的特征进行点击量的预测。

DIN

特征表示

这篇文章的数据集是这样的:在这里插入图片描述
我们可以看到再上图中的数据集中含有大量的用户的行为数据如:Visited_goods_ids, Visited_shop_ids, Visited_cate_ids等等用户的行为特征,我们已经指导如星期等我们可以通过one_hot编码来表示数据。如下图:
在这里插入图片描述
这里的一个非常值得关注的创新点就是这个数据集了,这算是较早的将用户的行为特征引入点击率预测的算法了。

算法模型

首先我们将介绍基础模型:
在这里插入图片描述
基础模型中输入的向量有用户的行为、商品等特征其中用户的行为特征经过一个池化后与其他几项特征一同输入到Concat&Flatten中,再经过一系列处理得到结果。而在DIN中加入了一个激活单元如下:
在这里插入图片描述
简单的可以将其理解为通过将用户和广告的相关特征输入后得到一个用户行为的权重,值得说明的是这个地方为该算法的第二大两点,也就是通过一个激活单元来计算用户行为特征的权重系数,将注意力权重融入到点击量预测中。
在这里插入图片描述
上图为DIN算法的流程图,我们可以注意到加入了一个Activation Unit的步骤,这一步就是通过计算权重得到的,然后通过池化以及一系列流程得到的结果。
与基础的点击率模型相比,新的点击率模型在用户行为上添加了一个注意力机制,这样的话我们就能通过注意力机制推断出哪个用户行为更加重要,因此通过这个注意力权重后相较于基础的点击率预测,我们能更好的表示用户的行为特征。同时有所创新的是加入了用户的交互行为,这与其他推荐方法有所不同。

代码实现

这里主要和大家说一下DIN模型的总体运行逻辑,这样可以让大家从宏观的层面去把握模型的编写过程。该模型所使用的数据集是movielens数据集, 具体介绍可以参考后面的GitHub。 因为上面反复强调了DIN的应用场景,需要基于用户的历史行为数据, 所以在这个数据集中会有用户过去对电影评分的一系列行为。这在之前的数据集中往往是看不到的。 大家可以导入数据之后自行查看这种行为特征(hist_behavior)。另外还有一点需要说明的是这种历史行为是序列性质的特征, 并且不同的用户这种历史行为特征长度会不一样, 但是我们的神经网络是要求序列等长的,所以这种情况我们一般会按照最长的序列进行padding的操作(不够长的填0), 而到具体层上进行运算的时候,会用mask掩码的方式标记出这些填充的位置,好保证计算的准确性。 在我们给出的代码中,大家会在AttentionPoolingLayer层的前向传播中看到这种操作。下面开始说编写逻辑:

首先, DIN模型的输入特征大致上分为了三类: Dense(连续型), Sparse(离散型), VarlenSparse(变长离散型),也就是指的上面的历史行为数据。而不同的类型特征也就决定了后面处理的方式会不同:

Dense型特征:由于是数值型了,这里为每个这样的特征建立Input层接收这种输入, 然后拼接起来先放着,等离散的那边处理好之后,和离散的拼接起来进DNN
Sparse型特征,为离散型特征建立Input层接收输入,然后需要先通过embedding层转成低维稠密向量,然后拼接起来放着,等变长离散那边处理好之后, 一块拼起来进DNN, 但是这里面要注意有个特征的embedding向量还得拿出来用,就是候选商品的embedding向量,这个还得和后面的计算相关性,对历史行为序列加权。
VarlenSparse型特征:这个一般指的用户的历史行为特征,变长数据, 首先会进行padding操作成等长, 然后建立Input层接收输入,然后通过embedding层得到各自历史行为的embedding向量, 拿着这些向量与上面的候选商品embedding向量进入AttentionPoolingLayer去对这些历史行为特征加权合并,最后得到输出。
通过上面的三种处理, 就得到了处理好的连续特征,离散特征和变长离散特征, 接下来把这三种特征拼接,进DNN网络,得到最后的输出结果即可。所以有了这个解释, 就可以放DIN模型的代码全貌了,大家可以感受下我上面解释的:

# DIN网络搭建
def DIN(feature_columns, behavior_feature_list, behavior_seq_feature_list):
    """
    这里搭建DIN网络,有了上面的各个模块,这里直接拼起来
    :param feature_columns: A list. 里面的每个元素是namedtuple(元组的一种扩展类型,同时支持序号和属性名访问组件)类型,表示的是数据的特征封装版
    :param behavior_feature_list: A list. 用户的候选行为列表
    :param behavior_seq_feature_list: A list. 用户的历史行为列表
    """
    # 构建Input层并将Input层转成列表作为模型的输入
    input_layer_dict = build_input_layers(feature_columns)
    input_layers = list(input_layer_dict.values())
    
    # 筛选出特征中的sparse和Dense特征, 后面要单独处理
    sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), feature_columns))
    dense_feature_columns = list(filter(lambda x: isinstance(x, DenseFeat), feature_columns))
    
    # 获取Dense Input
    dnn_dense_input = []
    for fc in dense_feature_columns:
        dnn_dense_input.append(input_layer_dict[fc.name])
    
    # 将所有的dense特征拼接
    dnn_dense_input = concat_input_list(dnn_dense_input)   # (None, dense_fea_nums)
    
    # 构建embedding字典
    embedding_layer_dict = build_embedding_layers(feature_columns, input_layer_dict)

    # 离散的这些特特征embedding之后,然后拼接,然后直接作为全连接层Dense的输入,所以需要进行Flatten
    dnn_sparse_embed_input = concat_embedding_list(sparse_feature_columns, input_layer_dict, embedding_layer_dict, flatten=True)
    
    # 将所有的sparse特征embedding特征拼接
    dnn_sparse_input = concat_input_list(dnn_sparse_embed_input)   # (None, sparse_fea_nums*embed_dim)
    
    # 获取当前行为特征的embedding, 这里有可能有多个行为产生了行为列表,所以需要列表将其放在一起
    query_embed_list = embedding_lookup(behavior_feature_list, input_layer_dict, embedding_layer_dict)
    
    # 获取历史行为的embedding, 这里有可能有多个行为产生了行为列表,所以需要列表将其放在一起
    keys_embed_list = embedding_lookup(behavior_seq_feature_list, input_layer_dict, embedding_layer_dict)
    # 使用注意力机制将历史行为的序列池化,得到用户的兴趣
    dnn_seq_input_list = []
    for i in range(len(keys_embed_list)):
        seq_embed = AttentionPoolingLayer()([query_embed_list[i], keys_embed_list[i]])  # (None, embed_dim)
        dnn_seq_input_list.append(seq_embed)
    
    # 将多个行为序列的embedding进行拼接
    dnn_seq_input = concat_input_list(dnn_seq_input_list)  # (None, hist_len*embed_dim)
    
    # 将dense特征,sparse特征, 即通过注意力机制加权的序列特征拼接起来
    dnn_input = Concatenate(axis=1)([dnn_dense_input, dnn_sparse_input, dnn_seq_input]) # (None, dense_fea_num+sparse_fea_nums*embed_dim+hist_len*embed_dim)
    
    # 获取最终的DNN的预测值
    dnn_logits = get_dnn_logits(dnn_input, activation='prelu')
    
    model = Model(inputs=input_layers, outputs=dnn_logits)
    
    return model

以上就是整个算法的学习了,emmm相较于其他的点击量预测(推荐算法)来说,较为突出的创新点应该是:

  1. 加入了注意力机制,在这个基础上优化了用户行为特征,获得了用户行为更加丰富,准确的表达方式。
  2. 数据集的创新(引入用户交互行为)。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值