手把手教你训练自己的FLUX Lora,从此实现写真自由

最近有小伙伴问我,提供一张照片怎么实现生成自己想要的图片,上次写过一篇文章,专门实现这个效果,仅需一张照片,不需要训练lora,就可以实现生成一致性的人物,上次的方案对于虚拟角色很好,但是生成的人物跟原人物脸部还是有点偏差,我估计是因为训练数据少了导致的。

所以,今天专门写一篇简单易操作的教程,通过自己照片训练一个自己专属的FLUX模型,利用好FLUX的超强生图能力,从此想生成啥生成啥,实现写真自由

好了,话不多说,先看效果哈,下面是用训练后的模型生成的图片,

下面说一下具体操作步骤

1. 准备15-20张高质量照片,最好是人物的正面照,不要有多余的背景和其他人物。

2. 打开国内的liblib平台,https://www.liblib.art/,点击首页左侧的“训练Lora”。

3. 进入训练界面,选择F.1,然后上传刚才准备好的图片

4. 上传图片后,修改打标参数,用我同样的参数就好了

触发词可以改成你喜欢的,就是后面生图的时候这个词代表你训练的人物对象,

参数设置好之后,点击“裁剪/打标”按钮

5. 等待一会,打标完成,依次点击每张图片,把自动生成文字删掉,然后只写 触发词、1gril或者1boy,如图,

6. 左下角模型预览提示词,也可以写一样的,就是训练过程中会生成图片预览

7. 开始训练,点击“立即训练”

小提示,每个月有5次免费训练的机会(算力500点以内),如果发现没有立即训练的按钮,可以删除几张图片,让算力在500以下。

我们先测测效果,效果好再给购买训练的点数。

8. 等一会,半个小时左右就训练完成了

9. 生图测试,先点击“模型生图测试”,会跳转到生图界面

注意,这里要先在Lora标签里面选择“我的训练”,然后点击一个刚训练好的模型,

然后填入正常文生图的提示词,把你的触发词放在最前面,然后就可以生图了。

好了,今天就分享到这里,有需要的小伙伴赶紧去试试吧~
请添加图片描述

如何训练LorA

对于很多刚学习AI绘画的小伙伴而言,想要提升、学习新技能,往往是自己摸索成长,不成体系的学习效果低效漫长且无助。

如果你苦于没有一份Lora模型训练学习系统完整的学习资料,这份网易的《Stable Diffusion LoRA模型训练指南》电子书,尽管拿去好了。

包知识脉络 + 诸多细节。节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。

由于内容过多,下面以截图展示目录及部分内容,完整文档领取方式点击下方微信卡片,即可免费获取!
请添加图片描述

img

img

img

篇幅有限,这里就不一一展示了,有需要的朋友可以点击下方的卡片进行领取!
请添加图片描述

### 使用 FluxLoRA 进行机器学习模型训练 #### 准备环境与工具 为了能够顺利地使用 FluxLoRA 来进行模型训练,首先需要准备好相应的开发环境。这通常意味着要安装 Python 及其必要的库文件,比如 PyTorch 或 TensorFlow 等深度学习框架。对于特定于 Flux 的情况,则需按照官方文档指导完成 Julia 编程语言及其依赖项的设置。 #### 加载预训练模型并应用LoRA微调 当准备就绪之后,可以从 Hugging Face Hub 下载预先训练好的基础模型作为起点[^2]。接着利用 LoRA 技术对该模型实施低秩适配(low-rank adaptation),即只更新部分参数而非整个网络结构中的所有权重值。这种方法不仅提高了效率而且减少了过拟合的风险。 ```python from peft import LoraConfig, get_peft_model import torch.nn as nn model = ... # Load your base model here. config = LoraConfig( r=8, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, ) peft_model = get_peft_model(model, config) ``` #### 构建数据集用于训练过程 构建适合当前任务的数据集至关重要。如果目标是创建像“黑神话悟空”这样的角色图像生成器,则应收集大量与此主题相关的高质量图片样本,并将其整理成可用于训练的形式。这些数据应当被划分为训练集、验证集以及测试集三大部分以便后续评估模型性能[^3]。 #### 开始训练流程 一旦上述准备工作全部完成后就可以启动实际的训练环节了。此阶段涉及到定义损失函数(loss function)、优化算法(optimizer algorithm)以及其他超参的选择。值得注意的是,在每次迭代过程中都要保存好最佳版本的模型副本至指定路径下以供将来部署或进一步改进之用[^1]。 ```python output_dir = "./ai-toolkit/output" for epoch in range(num_epochs): ... if best_loss > current_loss: best_loss = current_loss checkpoint_path = f"{output_dir}/best_model.pth" torch.save(peft_model.state_dict(), checkpoint_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值