lora训练

Stable Diffusion 模型存放路径

.\stable-diffusion-webui\models\Stable-diffusion

Stable Diffusion 模型下载路径

https://www.liblib.ai/

VAE存放路径

.\stable-diffusion-webui\models\VAE

VAE下载网站

https://civitai.com/

放大算法存放路径

./stable-diffusion-webui/models/ESRGAN

放大算法下载网站

https://upscale.wiki/wiki/Model_Database

LORA训练工具kohya_ss安装–通过阿里云EAS部署服务
在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/a2b147715fc642288dd2b079f8c0350d.png在这里插入图片描述
在这里插入图片描述

创建OSS
在这里插入图片描述
创建buket
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

lora训练

source model设置source model设置

folders设置

在这里插入图片描述

parameters

Train batch size:一次性单次送入模型的图片数 (A 10,不能超过4)
save every N epochs
LR Scheduler学习率
在这里插入图片描述
Network Rank (Dimension):学习的纬度
Network Alpha:创意
2 Network Alpha ≤ Network Rank (Dimension)
人脸推荐:128,64
在这里插入图片描述

Dataset Preparation

advanced
在这里插入图片描述

print training command:打印参数
start training:开始训练
在这里插入图片描述

图片打标签的方式

在这里插入图片描述

LoRA训练设置

将生成的lora模型放在 ./model/Lora文件夹下,选择合适的checkpoints
x,y轴值的初始值与选择的模型的初始值保持一致
在这里插入图片描述

在这里插入图片描述

### 使用 DeepSeek 进行 LoRA 训练 为了利用 DeepSeek 框架进行低秩适应(LoRA训练,需先理解该框架支持本地运行的相关配置[^2]。具体实现过程中,可以借鉴其他平台上的 LoRA 实现方法并迁移至 DeepSeek 中。 #### 准备工作环境 确保已安装必要的依赖库以及访问 DeepSeek 的最新版本仓库来获取最新的功能和支持。对于 LoRA 特定的支持,可参照 Hugging Face 提供的状态前沿参数高效微调(PEFT)库中的更新说明[^4]。 #### 配置模型与数据集 定义所使用的预训练基础模型,并准备用于微调的数据集。此部分操作通常涉及加载 tokenizer 和 dataset,在 PyTorch 或 TensorFlow 环境下完成初始化设置。 ```python from transformers import AutoTokenizer, TFAutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) ``` #### 应用 LoRA 修改 引入 PEFT 库提供的工具函数以修改原始模型架构,使其能够执行低秩分解从而减少所需调整的参数量。这一步骤是使常规 Transformer 架构兼容于 LoRA 关键所在。 ```python import peft # 假设已经通过 pip 安装了peft包 lora_config = { "r": 8, "alpha": 16, } model = peft.get_peft_model(model, lora_config) ``` #### 开始训练过程 最后按照标准流程编写训练循环逻辑,包括但不限于定义优化器、损失函数等组件;同时注意保存最佳权重以便后续评估或部署使用。 ```python optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5) def compute_loss(labels, logits): loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) return loss_fn(labels, logits) for epoch in range(num_epochs): for batch in training_dataset: with tf.GradientTape() as tape: outputs = model(batch['input_ids'], attention_mask=batch['attention_mask']) loss = compute_loss(batch['labels'], outputs.logits) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) print(f'Epoch {epoch} completed.') ``` 上述代码片段展示了如何集成 LoRA 技术到基于 DeepSeek 平台的工作流当中。值得注意的是实际编码时还需考虑更多细节如超参调节等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值