【2025版】喂饭级教程!ComfyUI本地部署超详细指南!

2024年已经悄然离去,而崭新的2025年正等待着我们去探索和成长。如果你渴望在2025年深入学习ComfyUI,那么你来对地方了!这是一份精心准备的教程,它将为你开启通往ComfyUI世界的大门。在2024年下半年,我们对相关知识进行了系统的梳理和优化,这份教程将以更加深入、清晰、易懂的方式呈现给你,为你扫清学习道路上一切障碍,那么我们就从最基础的开始:ComyUI的本地部署。跟着操作起来吧,2025年,让我们扬帆起航!

一、课程大纲

img

这份完整版的comfyui整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

SD

二、硬件环境要求

操作系统

推荐使用Windows10或Windows11系统;如何查看自己电脑的操作系统呢?

img

img

内存

内存大小建议:最低8G,越大越好。 查看系统内存容量:设备规格/机带RAM:表示电脑的内存容量,如果小于8G,建议购买内存条对内存进行扩充。

img

显卡

建议使用英伟达40系列显卡,8G容量是最低要求,建议16G,可以在价格和性能取一个平衡。

查看显卡型号:

img

img

img

显示:NVIDIA GeForce RTX 4070 Ti SUPER

NVIDIA显卡厂商名称,这里是英伟达
GeForce英伟达市场品牌
RTX英伟达技术品牌
4070 Ti显卡的型号
SUPER同系列基础型号的增强版

查看显卡容量:
查看路径:任务管理器/性能/GPU/专用GPU内存:

img

img

表示GPU容量为16G

硬盘

建议最低1T空间,越大越好,ComfyUI需要下载各种各样的大模型或插件,这些文件一般都比较大,随着ComfyUI的使用,电脑磁盘会越来越小,所以建议大家购买一个移动硬盘,专门用来ComfyUI的工作空间,这样既不会影响电脑磁盘的使用,而且还非常灵活便捷。

电源

最低400~600瓦左右

主板

无要求

CPU

无要求

三、软件环境要求

软件名称官方网址软件说明
Githttps://git-scm.com/文件下载工具
Pythonhttps://www.python.org/downloads/ComfyUI运行环境
VisualStudiohttps://visualstudio.microsoft.com/zh-hans/桌面程序支持(秋叶整合包
显卡驱动https://www.nvidia.cn/geforce/drivers/驱动显卡工作
CUDAhttps://developer.nvidia.com/cuda-toolkit并行计算平台和编程模型
Pytorchhttps://pytorch.org/get-started/locally/主流深度学习框架
cuDNNhttps://developer.nvidia.com/cudnn-downloads
Onnxruntimehttps://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html加速 ONNX 模型的推理和训练
xformershttps://github.com/facebookresearch/xformers提高 Transformer 模型在训练和推理阶段的效率
Git

git是获取远程代码的工具,我们通过它将github或huggingface上的模型文件下载到本地。

  1. 前往官网

https://git-scm.com/

\2. 下载软件安装包

在下载之前,我们先确认一下操作系统的位数:

img

可知:操作系统的位数为64位。

img

img

注意:要下载和操作系统位数一致的安装包!!!这里下载64位的安装包。

\3. 安装git

双击安装包,进行安装

img

我们需要记住安装的目录,因为我们需要将git写入环境变量。

\4. 设置git环境变量

img

img

img

img

\5. 检查是否安装成功

按住:Ctrl + x 组合键打开:

img

img

输入cmd,并点击确定按钮

img

输入git -v,如果输出git version 2.47.1.windows.1表示git安装成功了。

Python

python是ComfyUI运行环境,要求选择3.10及以上版本进行下载和安装

  1. 前往官网

https://www.python.org/downloads/

\2. 下载python安装包

img

img

下载3.11.9版本的python,这里注意要下载和操作系统位数一致的安装包。

4.安装python

双击python安装包,就可以开始安装python了

img

img

这里我们重新制定一个python安装目录,注意尽量不要放在C盘,之后再点击Install,然后就是一直Next就可以了

\5. 设置python环境变量

img

采用和Git一样的做法,将Python放在环境变量里。

\6. 检查是否安装成功

img

cmd中输入python -V,如果输出对应版本号,说明python安装成功了。
VisualStudioSetup
前往官网:https://visualstudio.microsoft.com/zh-hans/

img

img

显卡驱动
  1. 查看是否已经安装显卡驱动

按下 “Windows + X” 组合键,选择 “设备管理器”;或者按下 “Win + R” 键打开 “运行” 对话框,输入 “devmgmt.msc” 并按回车打开设备管理器。在设备管理器中,找到并展开 “显示适配器” 选项。如果显卡驱动已经装好,会显示显卡的详细信息,包括驱动程序的提供商和版本号;若驱动未装好或存在问题,则可能会显示黄色警告符号、问号,或者显示为 “标准 VGA 显示适配器”“未知设备” 等

\2. 如果没有安装,前往官网:https://www.nvidia.cn/geforce/drivers/

img

img

\3. 下载之后,安装即可

CUDA

CUDA 是 Compute Unified Device Architecture(计算统一设备架构)的缩写。
它是 NVIDIA(英伟达)公司推出的一种并行计算平台和编程模型,用于在 NVIDIA 的 GPU(图形处理器)上进行通用计算。这个架构使得 GPU 不再仅仅局限于图形渲染任务,还能够高效地执行各种复杂的计算任务,如科学计算、深度学习中的矩阵运算、数据处理等众多需要大规模并行计算的场景。

  1. 查看cuda是否已经安装

cmd命令行执行命令:nvcc -V
nvcc -V 显示的是你实际安装的 CUDA 的版本。

\2. 查看适配的CUDA型号

cmd打开命令行:执行命令:nvidia-smi

img

这里展示CUDA的版本号是与当前 GPU 驱动(driver)程序兼容的 CUDA 运行时版本。这是驱动程序支持的最高 CUDA 版本,并不是系统上安装的 CUDA的版本,基于向下兼容的原则,可以安装比这里展示版本小的CUDA,不能安装比这个版本高的CUDA,比如说安装12.8版本的CUDA,就会报错。
如果没有安装CUDA或者需要升级CUDA版本,可以通过下面的方式进行安装:

\3. 前往CUDA官网

https://developer.nvidia.com/cuda-toolkit
获取以往版本:

img

img

img

我们选择CUDA Toolkit 12.4.0这个版本进行下载。下载之后双击即可进行安装。

img

img

img

\3. 验证是否安装成功

cmd命令行执行命令:nvcc -V

img

说明CUDA已经安装成功了。

cuDNN

cuDNN和CUDA是由英伟达提供的两个互补的工具,CUDA 提供了基础的 GPU 加速计算能力,而 cuDNN 则在 CUDA 之上构建,是深度学习框架(如 TensorFlow、PyTorch、Caffe 等)中的关键组件,能够显著提升训练和推理的速度和效率。所以我们想要激活显卡更强的画图性能。
1、前往官网下载
https://developer.nvidia.com/cudnn-downloads

img

因为我们的CUDA的大版本是12,所以我们设置好上面的条件之后,就可以点击Download进行下载了。
2、解压下载好的cuDNN压缩包
里面包含下图所示的三个文件夹:

img

打开CUDA的安装文件夹(默认是:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4),将上面cuDNN解压的三个文件bin、include和lib分别复制粘贴到CUDA的文件夹中,如下图所示:

img

文件替换好后则cuDNN即为安装完成。

Pytorch

默认安装Pytorchpip3已经随着python的安装而安装了,如果没有安装,可以按照下面的方式进行pip3的安装:
pip安装

pip安装
1.pip安装脚本下载:https://mirrors.aliyun.com/pypi/get-pip.py
2.执行:python3 get-pip.py
3.验证:pip --version
4.修改pip源到国内
   1>管理员启动cmd
   2>换源:pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
   3>更新源:python -m pip install --upgrade pip
   
可选的国内pip源:
清华:https://pypi.tuna.tsinghua.edu.cn/simple
阿里云:http://mirrors.aliyun.com/pypi/simple/
豆瓣:http://pypi.douban.com/simple/

  1. 前往官网

https://pytorch.org/get-started/locally/

img

\2. 执行下载安装命令

按照上面的条件设置好后,复制最下方的命令:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

调出cmd,执行上面的命令,也可以指定清华源,加速下载和安装:

pip3 install pip -U
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

如果在安装过程中遇到问题,可以尝试先删除已安装的相关库,再重新安装,如pip3 uninstall torch torchvision torchaudio。另外,不同的国内源在不同地区和网络环境下的速度可能会有所不同,可以根据实际情况进行选择。

onnxruntime

版本判断
如何判断onnxruntime需要的版本:
https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html

img

已知:CUDA是12.x,cuDNN是9.x,因此我们需要安装1.20.x的Onnxruntime,具体是什么版本呢?我们可以随便输入错误的版本,然后它会自动的输入正确的版本集合:

img

也就是正确的版本集合:1.17.0, 1.17.1, 1.17.3, 1.18.0, 1.18.1, 1.19.0, 1.19.2, 1.20.0, 1.20.1
所以我们选择1.20.0即可
执行命令

python.exe -m pip install Onnxruntime==1.20.0 Onnxruntime-gpu==1.20.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

执行完成后,我们在ComfyUI_windows_portable\python_embeded\Lib\site-packages目录下看到对应的库文件:

img

xformers

xformers可以大大节省AI图片生成时间,节省GPU缓存!

python.exe -m pip install -U xformers --index-url https://download.pytorch.org/whl/cu124

运行ComfyUI

img

双击:run_nvidia_gpu.bat 运行ComfyUI

img

通过启动命令显示的信息,可以知道pytorch和xformers已经起作用了,启动之后,会自动打开浏览器:

img

如果你看到这个界面,说明已经启动成功了。

四、官方整合包安装

前往官网:https://github.com/comfyanonymous/ComfyUI

img

下载安装包专用解压工具:https://7-zip.org/

img

下载comfyui后,使用7z压缩包工具进行解压,结果过程比较慢,耐心等待。在启动ComfyUI之前,我们还需要给整合包安装加速组件:pytorch、onnxruntime、xformers。它们可以让ComfyUI更快的运行。

五、秋叶整合包安装

同样的,我们解压安装包之后,还是要先安装pytorch,onnxruntime,xformers对ComfyUI进行加速。操作和官方整合包安装一样,这里就不操作了。

img

安装依赖

img

首次启动,需要安装.NET Desktop Runtime
https://dotnet.microsoft.com/zh-cn/download/dotnet/thank-you/runtime-desktop-6.0.36-windows-x64-installer?cid=getdotnetcore
下载之后,双击安装即可:

img

重新启动,弹出如下窗口,点击“是”即可:

img

img

我们需要重新启动电脑,使长路径生效。
启动ComfyUI
重启电脑后,我们启动秋叶:

img

点击:一键启动,就可以启动ComfyUI了。

img

启动成功后,自动打开浏览器:

img

这份完整版的comfyui整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

### 关于微信与DeepSeek集成的入门教程 #### 一、理解基础概念 为了更好地理解和实现微信与DeepSeek之间的集成,了解两者的基础功能至关重要。微信提供了一个强大的生态系统,支持从小程序到公众号等多种应用形态;而DeepSeek作为一个假设中的智能技术平台,可以用于增强用户体验和服务智能化。 #### 二、准备环境设置 在开始之前,确保已经完成了必要的准备工作: - 注册并登录微信公众平台账号; - 获取AppID和AppSecret等基本信息[^1]; - 准备好本地开发环境,安装Node.js或其他适合的语言运行时环境。 #### 三、创建项目结构 建立合理的目录结构有助于项目的管理和维护: ```plaintext wechat-deepseek-integration/ ├── config/ # 配置文件夹 │ └── wechat.config.js # 微信配置项 ├── controllers/ # 控制器层 │ ├── indexController.js # 主页控制器 │ └── deepSeekController.js # 处理来自DeepSeek的数据交互 └── services/ # 服务层 └── wechatService.js # 实现具体业务逻辑的服务函数 ``` #### 四、编写核心代码片段 以下是几个关键部分的具体编码示范: ##### 1. 初始化微信服务器端口监听 通过Express框架快速搭建HTTP服务器来接收来自微信的消息推送通知。 ```javascript // server.js const express = require('express'); const app = express(); app.use(express.json()); require('./controllers/indexController')(app); require('./services/wechatService'); const PORT = process.env.PORT || 3000; app.listen(PORT, () => console.log(`Server running on port ${PORT}`)); ``` ##### 2. 实现签名验证机制 按照官方文档说明完成对接收到的信息的安全性校验工作。 ```javascript // services/wechatService.js function checkSignature({ token, signature, timestamp, nonce }) { const arr = [token, timestamp, nonce].sort().join(''); const sha1 = crypto.createHash('sha1').update(arr).digest('hex'); return sha1 === signature; // 返回布尔值表示是否匹配成功 } module.exports = {checkSignature}; ``` ##### 3. 构建与DeepSeek通信接口 设计API以便能够有效地调用DeepSeek所提供的各项能力。 ```javascript // controllers/deepSeekController.js async function handleDeepSeekRequest(req, res) { try { let responseFromDeepSeek = await fetchDeepSeekData(); // 假设这是向DeepSeek发起请求的方法 if (responseFromDeepSeek.ok) { sendResponseToWeChatUser(responseFromDeepSeek.data); // 向用户发送回复消息 } else { throw new Error('Failed to get data from DeepSeek.'); } res.status(200).send('Success'); } catch(error){ console.error(error.message); res.status(500).send('Internal Server Error'); } } module.exports = router.post('/deepseek', handleDeepSeekRequest); ``` 以上展示了如何构建一个简单的基于Node.js的应用程序来进行微信与DeepSeek间的初步集成尝试。当然实际操作过程中还需要考虑更多细节问题以及安全措施等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值