通义万相Wan2.1强势开源,Comfyui版本部署教程

通义万相(Wan2.1)

模型介绍

通义万相(Wan)2.1 是阿里云通义实验室推出的开源多模态生成模型,支持文 / 图生视频、视频编辑及音视频生成。它包含 140 亿参数专业版和 13 亿参数极速版,基于自研 3D VAE 与 DiT 技术,可实现中英动态文字生成及 1080P 长视频编解码,适用于影视、广告及短视频创作等领域。

PART.01

启动应用

首先,进入**星海智算平台,**点击【**GPU实例】,**即可创建实例。

图片

在【**选择配置】**中,可选择不同区域的显卡。

图片

在**【镜像市场】中选择木木夕ComfyUI全量版镜像确认后在实例创建页面点击<立即创建>**即可。

图片

图片

等待模型自动创建开机(大约需要2分钟

图片

创建成功等待4-5分钟,看到**<运行中>即可开始使用,点击应用服务**即可跳转到对应的镜像。

图片

PART.02

镜像操作

01**.进入镜像界面**

**进入Comfyui界面后,**依次点屏幕上方文件夹,在文件夹中找到Wan2.1-官方流。

图片

选择「文生视频」任务节,提供「480P」与「720P」两档预设。

图片

特别提醒:在绿色的框格内填入正向提示词,红色的框格内填入反向提示词

图片

02**.文件目录说明**

贴心的木木夕老****师已自动化了工作流目录、模型目录、出图目录供大家使用哦 ~

预置工作流目录

工作流目录为MMX_workflows目录,目录是每次启动更新的,使用时可以先获取预置工作流。

图片

自有模型加载及目录

成功创建实例之后,相应的网盘目录中即会出现MMX_ComfyUI-models这一目录。

图片

文件目录及传输

打开models目录,预制checkpoints****目录loras目录,将模型放入这两个文件夹,并重新开启实例即可正常使用。

图片

**注:**可直接将对应模型拖到平台官方网盘文件夹内,上传完成后重启实例即可读取 。

图片

如果需要自己上传模型的话,可以创建“unet”“clip”“checkpoints”等目录(在MMX_ComfyUI-models目录下)。

其他文件夹你需要遵循comfyUI的model目录的命名规则,在MMX_ComfyUI-models目录内创建对应目录也是可以加载的。

遵循comfyUI的model目录的命名规则,在MMX_ComfyUI-models目录内创建对应目录。

遵循comfyUI的model目录的命名规则,在MMX_ComfyUI-models目录内创建对应目录。

遵循comfyUI的model目录的命名规则,在MMX_ComfyUI-models目录内创建对应目录。

图片

预置工作流目录

如果网页传文件失败了,可以尝试使用win实例传输(无卡模式),安装百度、夸克、迅雷等网盘工具,下载到网盘对应的目录。如下:

图片

**特别提醒:**为了保证模型文件的稳定加载,模型文件名最好英文或拼音之类,也不要有“【】”“{}”“|”等不太常见的字符,文件名之间不要有空格,空格可以使用“_”或者“-”来代替。

自有工作流加载及目录

出图目录在网盘的MMX_ComfyUI-output目录

图片

出图目录更新规则:实例每次启动时,把上一次生成的文件,同步至网盘目录。

03**.缺失插件更新说明**

直接在管理器内添加缺失的插件,等待提示重新打开页面,部分插件需要重启实例才能生效。部分插件会冲突,无法启动,可以重新创建实例。

图片

请添加图片描述

### 通义2.1本地部署教程和配置指南 #### 部署环境准备 为了成功部署通义2.1,在本地环境中需预先安装并配置必要的软件包和支持库。通常情况下,这包括但不限于Python解释器及其依赖项、虚拟环境管理工具如`virtualenv`或`conda`等。 对于操作系统的要求,建议采用Linux发行版或是具备良好兼容性的Windows子系统(Linux)版本[^1]。 ```bash sudo apt-get update && sudo apt-get install python3-pip virtualenv -y ``` #### 获取源码与初始化项目结构 通过官方渠道下载最新发布的通义2.1压缩包文件,并解压至目标目录下;或者克隆GitHub仓库中的对应分支获取最新的开发状态副本。完成之后进入工程根路径执行初始化命令创建独立运行所需的全部基础架构。 ```bash git clone https://github.com/your-repo/tongyi-wanxiang.git cd tongyi-wanxiang virtualenv venv --python=python3 source ./venv/bin/activate pip install -r requirements.txt ``` #### 数据集加载与预处理 根据具体应用场景的不同,可能还需要额外的数据准备工作。这部分工作涉及数据清洗、转换格式等一系列操作以确保输入符合预期标准。部分大型语言模型可能会自带训练好的权重参数可以直接用于推理阶段而无需重新训练整个网络结构。 #### 启动服务端口监听 当一切就绪后即可启动API服务器对外提供RESTful接口访问权限。默认情况下会绑定到localhost上的8080端口上等待客户端发起请求连接。如果希望开放给外部网络则需要调整应的防火墙策略允许特定IP地址范围内的设备接入。 ```bash export FLASK_APP=wsgi.py flask run --host=0.0.0.0 --port=8080 ``` #### 测试验证功能正常性 最后一步是对刚刚搭建起来的服务实例进行全面的功能测试,确认各个模块之间交互无误且能够稳定输出期望的结果。可以借助Postman这类图形界面HTTP调试工具发送模拟查询指令观察返回值是否合理有效。 ```json { "prompt": "你好世界", "max_tokens": 50, "temperature": 0.7 } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值