windows万相2.1本地部署

目录

1. 安装环境

1.1 python环境

1.2 cuda环境 

2. 下载万相2.1源码

3. 创建虚拟环境下载依赖

3.1 启动虚拟环境 

3.2 下载万相2.1的依赖

4. 下载模型

4.1 离线下载

4.2 在线下载

5. 官方示例

6. 运行效果截图


1. 安装环境

1.1 python环境

        如果有 python3.10+ 环境可以跳过这一步 直接进入第2步 安装步骤点击查看

        低于 3.10(cp310) 会导致 flash_attn 依赖无法正常安装, 这里用的 python3.12.9

1.2 cuda环境 

       需要安装和自己的显卡版本相匹配的包 显卡低于4060就别去搞了  训练5小时得到5秒钟的视频, 还不如直接用阿里提供在线网页版视频生成功能

       打开cmd输入nvidia-smi

发现cuda版本支持到12.8 去cuda官网下载 

后来发现项目启动需要的flash_attn这个依赖与cuda编译好的现成的依赖只支持12.4,所以下载12.8就行不通了

所以下载12.4的cuda依赖点击下载  或者使用csdn下载速度快些

下载之后设置安装 第一次选择的是临时目录  安装之后会自动删除 第二次选择的是安装,选择自定义安装,选择所有,设置安装目录,然后下一步一直点最后安装完成,验证安装是否正常

选择安装的时候提示 visual studio 不支持(如果没有出现就跳过下面的c++工具安装),需要单独安装visual studio找到支持当前cuda的版本 这里安装的cuda12.4支持visual studio 2022

点击进入官网选择下载visual studio工具


 

 下载完成后打开

下载完成后打开安装c++的桌面开发工具

然后安装完成后关闭,继续回到cuda的安装,这个时候就发现 visual studio 已经支持,点击下一步继续安装cuda最后安装完成,关闭

打开cmd控制台 输入

nvcc --version

如果没有提示 需要主动设置环境变量

2. 下载万相2.1源码

        下载的万相2.1开源代码或者去github中点击下载

解压后得到文件

 其中 requirements.txt 表示依赖文件  generate.py是环境搭建好了之后的启动脚本

3. 创建虚拟环境下载依赖

3.1 启动虚拟环境 
# 在当前目录中创建python虚拟环境
python -m venv venv
# 启动虚拟环境
venv\Scripts\activate
3.2 下载万相2.1的依赖

万相2.1的所有依赖在 requirements.txt 中,直接使用pip下载 速度较慢 可以使用国内的源下载

注意 numpy>=1.23.5,<2 这里用1.26.4

pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade pip
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple numpy==1.26.4
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple torch>=2.4.0
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision>=0.19.0
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python>=4.9.0.80
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple diffusers>=0.31.0
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple transformers>=4.49.0
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple tokenizers>=0.20.3
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple accelerate>=1.1.1
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple tqdm
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple imageio
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple easydict
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple ftfy
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple dashscope
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple imageio-ffmpeg
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple gradio>=5.0.0
pip3 install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple flash_attn

​其中的依赖 flash_attn 安装失败  
官方发布的最新版是2.7.4且只有Linux版本,不支持windiws,在github中有大佬编译好的windows版本的flash_attn

需要手动到第三方找到符合自己系统的版本(速度较慢,科学上网)

直接下载离线安装到python虚拟环境 或者在CSDN中点击下载

这里下载的是 (cp312表示python3.12版本 主要和自己的版本对应上否则安装flash_attn会失败)

flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp312-cp312-win_amd64.whl

对应的cuda124torch2.6.0 上面提到需要cuda版本和flash_attn进行兼容,flash_attn 对应的 cuda支持到12.4

下载完成之后离线安装

pip install D:/data/flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp312-cp312-win_amd64.whl

更换cuda版本

# 卸载
pip uninstall torch torchvision
# 根据上述的cu124和torch2.6.0更换版本 要下载很久 预计5个小时  睡一晚就好了
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu124

4. 下载模型

4.1 离线下载

        点击魔塔社区选择下载 需要下载整个目录

4.2 在线下载

在线下载自动下载整个目录 

# 方式1 使用huggingface_hub下载 需要设置国内源否则下载不了
# pip install "huggingface_hub[cli]"
# huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir ./Wan2.1-T2V-1.3B
# 方式2 推荐 使用modelscope 下载
pip install --timeout 30 -i https://pypi.tuna.tsinghua.edu.cn/simple modelscope
modelscope download Wan-AI/Wan2.1-T2V-1.3B --local_dir ./Wan2.1-T2V-1.3B

5. 官方示例

python D:\wan2.1\Wan2.1-main\generate.py  --task t2v-1.3B --size 480*832 --ckpt_dir D:\wan2.1\python_tmp\Wan2.1-T2V-1.3B --prompt "两只拟人化的猫穿着舒适的拳击服,戴着明亮的手套,在聚光灯下激烈地打斗." --save_file  D:\wan2.1\out.mp4

6. 运行效果截图

 还在下载模型...  等下完了再截图演示..

python D:\wan2.1\Wan2.1-main\generate.py ^
--task t2v-1.3B ^
--size 480*832 ^
--frame_num 1 ^
--ckpt_dir D:\wan2.1\Wan2.1-T2V-1.3B ^
--prompt "在月光下,出现一只在夜间漫步行走的黑色猫咪" ^
--save_file D:\wan2.1\out.mp4

参数解释

task                模型类型

size                输出文件的尺寸

ckpt_dir          模型的根目录

prompt           转化为视频的内容说明

save_file        输出文件名称

frame_num    帧,为了方便 这里只用了1帧 相当于是图片

如果当前电脑的请求压力比较大,可以使用一些请求参数降低当前服务的请求压力,比如降低当前服务使用的内存参数大小

请求的示例参数如下 (注意 ^ 表示换行拼接,用在windows的环境中,linux中不适用当前请求参数)

请求的示例如下(这里只写了14B的模型代码示例,没有演示):

:: 如果下载的是14B的模型,使用14B的模型完成文字转图片示例

python D:\wan2.1\Wan2.1-main\generate.py ^
--task t2i-14B ^
--size 1024*1024 ^
--ckpt_dir E:\models\Wan2.1-T2V-14B ^
--offload_model True 
--t5_cpu ^
--sample_shift 8 ^
--sample_guide_scale 6 ^
--prompt "一只猫咪" ^
--save_file D:\wan2.1\out.jpg

 这里设置的frame_num是1,所以出图较快,等十来分钟过后就出来了

接下来见证使用1.3B模型在4060跑图的奇迹时刻(<1帧视频>在月光下,出现一只在夜间漫步行走的黑色猫咪)

!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!

感觉有点奇怪

总结是使用的文字描述不够完美 这里在换一次文字

一位身着白色水手服的青春女学生,黑色直发齐刘海,面容清秀,红润的嘴唇。站在校园楼梯间,阳光透过窗户斜射进来,在她脸上和白色衣服上形成温暖的光斑,背景是模糊的楼梯和栏杆。她轻轻眨动眼睛,嘴角缓缓上扬形成浅浅的微笑,随后低头看向地面,手指不经意地轻抚过垂落的发丝,将它们别到耳后,又将双手轻轻放入校服口袋,微微侧头望向远方,眼神中流露出些许思考和憧憬的神情。镜头采用近景拍摄,柔和地捕捉她细微的表情变化和动作,随后缓缓平移至侧面,展现她站立的优雅轮廓。整个场景充满宁静与温暖的氛围,洋溢着青春的气息,日系青春电影风格,柔和复古的色调,如同胶片相机般带有淡淡的怀旧感

 

经过实测,正常跑5秒视频  4060显卡消耗时间 6个小时20分钟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小钻风巡山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值