1560: [JSOI2009]火星藏宝图

题目链接

题目大意:给定一个m*m的矩阵,上面有n个点,每个点上有一个正的收益,在两个点之间走的代价是距离的平方,求(1,1)到(m,m)的最大收益

题解:可以直接排序dp, O(n2) 过不了
对于一个点 C(x,y) ,如果其左上方有 B(x1,y1) A(x1,y2) ,且
A在B上方, a,b>0 ,有 a2+b2(a+b)2
可知 AC 不会比 ABC

对于 A 之前的每一列,只有行最靠近A的能对 A 贡献,反之亦然
pos[i]表示第i列最靠下那行的位置, f[i] 表示 (pos[i],i) 的值

以 行 为第一关键值,列 为第二关键值排序。
这样枚举列的时候,就保证了行是一定比这个点小的。

复杂度 O(mn)

我的收获:Orz

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
 
const int M=200005;
#define INF 0x3f3f3f3f
 
int n,m,pos[M],f[M];
 
struct node{int x,y,w;}a[M];
 
bool cmp(node a,node b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
 
int cal(int x1,int y1,int x2,int y2){return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);}
 
void work()
{
    for(int i=1;i<=n;i++){
        int t=-INF;
        for(int j=1;j<=a[i].y;j++)
            if(pos[j]) t=max(t,f[j]-cal(a[i].x,a[i].y,pos[j],j));   
        pos[a[i].y]=a[i].x;f[a[i].y]=t+a[i].w;
   }  
   printf("%d\n",f[m]);
}
 
void init()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
    sort(a+1,a+1+n,cmp);
    f[1]=0;pos[1]=1;
}
 
int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值