3517: 翻硬币

题目链接

题目大意:n*n的01矩阵,每次操作选择(x,y),将第x行和第y列取反,求
将01矩阵全部变为相同数字的最少操作数

题解:由于取反就是异或1,根据异或运算的自反性,每个点最多只能翻一次,脑补(后发现,变成全0+全1=n*n。假定全变成0。对于每个点,翻与不翻设为 x[i][j] ,考虑(i,j),对它有影响的是纵坐标为j的x(u,j)和横坐标为i的x(i,v),根据它最后为0可以得到一个方程:
x[1][j] ^ x[2][j] ^ ... ^ x[n][j] ^ x[i][1] ^ x[i][2] ^ ... ^ x[i][n] ^ a[i][j] ^ x[i][j]=0
把常量移到后面,得到
x[1][j] ^ x[2][j] ^ ... ^ x[n][j] ^ x[i][1] ^ x[i][2] ^ ... ^ x[i][n] ^ x[i][j]= a[i][j]
有n^2个变量和n^2个方程,所以有唯一解
然后可以搞一搞异或方程组。高斯消元?
找(i,j)和(i,xx)和(xx,j)异或,由于n为偶数,左边只剩下了 x[i][j] ,右边是所有和 ij 有关系的 a[i][j] 的异或和……

我的收获:异或强啊,菜啊

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

const int M=1005;

int n,ans;
int a[M][M],sumx[M],sumy[M];
char s[M];

void work()
{
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            ans+=sumx[i]^sumy[j]^a[i][j];
    printf("%d\n",min(ans,n*n-ans));
}

void init()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%s",s+1);
        for(int j=1;j<=n;j++)
            a[i][j]=s[j]-'0',sumx[i]^=a[i][j],sumy[j]^=a[i][j];
    }
}

int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值