2023第十二届“认证杯”A题:太阳黑子变化|数学中国数学建模国际赛(小美赛)| 建模秘籍&文章代码思路大全

本文介绍了如何使用ARIMA模型预测太阳黑子的活动,包括太阳周期的开始和结束时间,以及太阳最大值的发生时间和持续时间。通过分析太阳黑子数据的时序、平稳性、ACF和PACF,以及应用傅立叶变换和峰值检测技术,提供了一个完整的预测框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

铛铛!小秘籍来咯!

小秘籍希望大家都能轻松建模呀,数维杯也会持续给大家放送思路滴~

抓紧小秘籍,我们出发吧~

完整内容可以在文章末尾领取!

来看看认证杯(A题)!
在这里插入图片描述
问题重述:

太阳黑子是太阳光球上出现的暂时比周围区域更暗的斑点现象。它们是由于磁通量的浓集而引起的表面温度降低区域,抑制对流而形成的。太阳黑子通常出现在活跃区域内,通常成对出现,具有相反的磁极性。它们的数量根据大约11年的太阳周期而变化。我们需要预测太阳黑子,通常我们需要将结果在月度基础上进行平均。

问题一、请预测当前太阳周期和下一个太阳周期的开始和结束时间;

预测太阳周期的开始和结束时间通常是基于太阳黑子活动的观测数据。我们可以使用时间序列分析方法来预测太阳周期的开始和结束时间。在这里,我们将使用ARIMA(差分整合移动平均自回归模型)作为一种常用的时间序列分析方法。

ARIMA 模型是一种包含自回归(AR)、差分(I,表示整合)、和移动平均(MA)的时间序列分析模型。以下是 ARIMA 模型的一般形式:

ARIMA(p,d,q)ARIMA(p, d, q)ARIMA(p,d,q)

其中:

  • p(AR阶数): 自回归的阶数,表示当前观测与过去 p 个观测之间的关系。

  • d(差分阶数): 整合的阶数,表示对时间序列进行差分的次数,以使其变得平稳。

  • q(MA阶数): 移动平均的阶数,表示当前观测与过去 q 个观测的误差之间的关系。

ARIMA 模型的一般形式可以用数学公式表示为:

Yt=ϕ1Yt−1+ϕ2Yt−2+…+ϕpYt−p+ϵt−θ1ϵt−1−θ2ϵt−2−…−θqϵt−qY_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \ldots - \theta_q \epsilon_{t-q}Yt=ϕ1Yt1+ϕ2Yt2++ϕpYtp+ϵtθ1ϵt1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模小secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值