2024 美国大学生数学建模竞赛(A题)资源可用性和性别比例问题 | 建模秘籍&文章代码思路大全

铛铛!小秘籍来咯!

小秘籍希望大家都能轻松建模呀,华数杯也会持续给大家放送思路滴~

抓紧小秘籍,我们出发吧~

完整内容可以在文章末尾领取!
在这里插入图片描述

问题重述:

2024年MCM问题A:资源可用性和性别比例

在自然界,有些动物物种存在除了常见的雄性和雌性之外的性别,但大多数物种主要是雄性或雌性。尽管许多物种在出生时表现出1:1的性别比例,但其他物种会偏离均等的性别比例,这被称为适应性性别比例变异。例如,美国鳄鱼的巢穴温度会影响出生时的性别比例。

对于七鳃鳗的角色是复杂的。在一些湖泊栖息地中,它们被视为对生态系统产生重要影响的寄生虫,而在世界一些地区,如斯堪的纳维亚、波罗的海地区以及北美太平洋西北部的一些土著民族中,七鳃鳗也是一种食物来源。

七鳃鳗的性别比例可以根据外部环境而变化。七鳃鳗在幼虫阶段的生长速度决定其性别,而这些幼虫的生长速度受食物可用性的影响。在食物可用性较低的环境中,生长速度较慢,雄性的比例可能达到人口的约78%。而在食物更充足的环境中,雄性的比例观察到约为人口的56%。

我们关注七鳃鳗的性别比例及其对当地条件的依赖性,具体是湖泊或海洋栖息地的七鳃鳗。七鳃鳗生活在湖泊或海洋栖息地,并沿河上迁移产卵。任务是研究一个物种能够根据资源可用性改变其性别比例时,对生态系统中相互作用的影响。

要探讨的问题包括:

  • 当鳗鱼种群能够改变其性别比例时,对更大的生态系统有何影响?
  • 鳗鱼种群的优势和劣势是什么?
  • 鳗鱼性别比例的变化对生态系统的稳定性有何影响?
  • 具有可变性别比例的鳗鱼种群是否能够为生态系统中的其他生物(如寄生虫)提供优势?

你的PDF解决方案总页数不得超过25页,包括:

  • 一页摘要表。
  • 目录。
  • 完整解决方案。
  • 参考文献列表。
  • AI使用报告(如使用,不计入25页总页数限制)。

在报告中,需明确使用的AI工具,包括模型和目的,并在文中引用和在参考文献中列出所有使用的AI工具。如果使用AI工具,请在报告结束后添加一个名为“AI使用报告”的新部分,无页数限制,不计入总页数限制。

问题一

当鳗鱼种群能够改变其性别比例时,对更大的生态系统有何影响?
基于代理的建模详细分析:

1. 代理属性定义:

  • 性别(Gender): 每个鳗鱼个体在模型中具有雄性或雌性属性。
  • 年龄(Age): 代理的年龄属性将随着模拟的时间推移而增长。
  • 生长速率(Growth Rate): 该属性表示个体的生长速度,直接影响代理的性别发展。

2. 代理行为规则定义:

  • 食物获取(Food Acquisition): 代理根据环境中的食物可用性采取不同的行为。成功获取食物的代理生长速率增加。
  • 繁殖行为(Reproduction): 代理在适当的年龄和环境条件下进行繁殖。繁殖成功率与性别、年龄有关。

3. 影响性别比例的因素:

  • 食物可用性(Food Availability): 模拟中,食物可用性会影响代理的生长速率。更丰富的食物资源可能导致更高的生长速率,从而影响性别比例。
  • 年龄(Age): 特定年龄段可能更容易发展成特定性别。模型中,性别发展概率会随着年龄的增加而变化。

4. 代理交互规则定义:

  • 竞争(Competition): 代理之间存在资源竞争和繁殖竞争。竞争因素会影响食物获取和繁殖的成功率,进而影响生长速率和性别比例。

5. 可能的公式:

  • 生长速率(Growth Rate):
    • G r o w t h R a t e = F o o d A v a i l a b i l i t y × ( 1 − C o m p e t i t i o n F a c t o r ) GrowthRate = FoodAvailability \times (1 - CompetitionFactor) GrowthRate=FoodAvailability×(1CompetitionFactor)
  • 繁殖成功率(Reproduction Success Rate):
    • R e p r o d u c t i o n S u c c e s s = A g e F a c t o r × G e n d e r F a c t o r × ( 1 − C o m p e t i t i o n F a c t o r ) ReproductionSuccess = AgeFactor \times GenderFactor \times (1 - CompetitionFactor) ReproductionSuccess=AgeFactor×GenderFactor×(1CompetitionFactor)
  • 性别发展概率(Gender Development Probability):
    • G e n d e r D e v e l o p m e n t P r o b a b i l i t y = A g e F a c t o r GenderDevelopmentProbability = AgeFactor GenderDevelopmentProbability=AgeFactor
  • 竞争因素(Competition Factor):
    • C o m p e t i t i o n F a c t o r = C o m p e t i t o r s T o t a l P o p u l a t i o n CompetitionFactor = \frac{Competitors}{TotalPopulation} CompetitionFactor=TotalPopulationCompetitors

Agent-Based Modeling (ABM) 简介:

ABM是一种建模方法,通过模拟个体代理的行为和相互作用,以理解整体系统的行为。在这个场景中,每个鳗鱼个体都是代理,其行为受到模型中定义的规则和环境条件的影响。

ABM的核心思想是将系统建模为一组具有独特属性和行为规则的个体,这些个体根据模拟的时间步骤进行交互。通过观察个体之间的相互作用,可以了解整体系统是如何演变的。

在我们的模型中,代理(鳗鱼个体)的行为受到食物可用性、年龄、性别和竞争等因素的影响。通过迭代模拟这些代理的行为,我们可以观察到整个鳗鱼种群中性别比例的变化,并探讨这种变化对生态系统的影响。

ABM提供了一种灵活的方法,可以模拟复杂系统中个体之间的相互作用,从而更好地理解整个系统的动态。

import random
import matplotlib.pyplot as plt

class EelAgent:
    def __init__(self, gender, age, growth_rate):
        self.gender = gender
        self.age = age
        self.growth_rate = growth_rate

def calculate_competition_factor():
    # Placeholder for competition factor calculation
    return random.uniform(0.2, 0.8)

def calculate_age_factor(eel):
    # Placeholder for age factor calculation
    return 0.8 if eel.age < 5 else 0.2

#省略部分见完整版

def visualize_population(eel_population, timestep):
    # Simple bar chart to visualize gender distribution
    genders = [eel.gender for eel in eel_population]
    plt.figure()
    plt.title(f"Population Distribution at Timestep {
     timestep}")
    plt.hist(genders, bins=['Male', 'Female', 'Unknown'], color=['blue', 'pink', 'gray'])
    plt.show()

# Simulation parameters
population_size = 100
food_availability = 0.8
simulation_duration = 10

# Initialize a population of EelAgents
eel_population = [EelAgent(random.choice(['Male', 'Female']), 0, 1.0) for _ in range(population_size)]

# Simulation loop
for timestep in range(simulation_duration):
    for eel in eel_population:
        # Eel's behavior: Acquire food based on food availability and competition
        eel.growth_rate = food_availability * (1 - calculate_competition_factor())

        # Eel's behavior: Reproduce based on age, gender, and competition
        new_eel = eel.reproduce(calculate_age_factor(eel), calculate_gender_factor(eel), calculate_competition_factor())
        if new_eel:
            eel_population.append(new_eel)

    # Visualize the population at each timestep
    visualize_population(eel_population, timestep)

在上述Python示例中,我们使用了Matplotlib库来创建简单的直方图,以可视化鳗鱼种群的性别分布。下面是如何更详细地可视化:

  1. 进化过程的可视化: 可以通过绘制种群中每个鳗鱼个体的属性随时间的演变来了解整个进化过程。例如,可以在每个时间步骤结束后记录种群中鳗鱼个体的年龄、性别、生长速率等,并使用折线图或散点图来表示这些属性的变化。

  2. 生长速率分布: 可以绘制种群中鳗鱼个体的生长速率分布,以了解生长速率在整个种群中的分布情况。这可以通过直方图或核密度估计图来实现。

  3. 种群大小随时间的变化: 可以通过追踪每个时间步骤后的种群大小,并绘制种群大小随时间的变化曲线。这有助于了解模拟过程中种群的增长或减小趋势。

import random
import matplotlib.pyplot as plt

class EelAgent:
    def __init__(self, gender, age, growth_rate):
        self.gender = gender
        self.age = age
        self.growth_rate = growth_rate

def calculate_competition_factor():
    return random.uniform(0.2, 0.8)

def calculate_age_factor(eel):
    return 0.8 if eel.age < 5 else 0.2

def calculate_gender_factor(eel):
    return 0.7 if eel.gender == 'Female' else 0.3

def visualize_population(eel_population, timestep):
    # Simple bar chart to visualize gender distribution
    genders = [eel.gender for eel in eel_population]
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    plt.title(f"Population Distribution at Timestep {
     timestep}")
    plt.hist(genders, bins=['Male', 'Female', 'Unknown'], color=['blue', 'pink', 'gray'])
    
    # Evolution process visualization
    ages = [eel.age for eel in eel_population]
    growth_rates = [eel.growth_rate for eel in eel_population]

    plt.subplot(1, 2, 2)
    plt.title("Evolution Process")
    plt.plot(ages, label='Age')
    plt.plot(growth_rates, label='Growth Rate')
    plt.legend()

    plt.show()

def visualize_growth_rate_distribution(eel_population):
    growth_rates = [eel.growth_rate for eel in eel_population]
    plt.figure(figsize=(8, 5))
    plt.title("Growth Rate Distribution")
    plt.hist(growth_rates, bins=20, color='green', alpha=0.7)
    plt.xlabel("Growth Rate")
    plt.ylabel("Frequency")
    plt.show()

# Simulation parameters
population_size = 100
food_availability = 0.8
simulation_duration = 10

# Initialize a population of EelAgents
eel_population = [EelAgent(random.choice(['Male', 'Female']), 0, 1.0) for _ in range(population_size)]

# Simulation loop
for timestep in range(simulation_duration):
    for eel in eel_population:
        eel.growth_rate = food_availability * (1 - calculate_competition_factor())
        new_eel = eel.reproduce(calculate_age_factor(eel), calculate_gender_factor(eel), calculate_competition_factor())
        if new_eel:
            eel_population.append(new_eel)

    # Visualize the population at each timestep
    visualize_population(eel_population, timestep)

# Visualize growth rate distribution at the end of simulation
visualize_growth_rate_distribution(eel_population)

我们添加了一个新的函数 visualize_growth_rate_distribution 来绘制种群中鳗鱼个体生长速率的分布情况。同时, visualize_population 函数现在包括了演化过程的可视化。
在这里插入图片描述

问题二

鳗鱼种群的优势和劣势是什么?
使用Agent-Based Modeling (ABM) 解决问题二的建模思路(使用字母表示的具体公式):
在建模过程中,我们使用字母来表示不同的变量和参数,以提高模型的可读性和通用性。以下是建模思路中的公式,使用字母表示:
1. 代理属性定义:

  • G G G:代理的性别,取值为雄性(Male)或雌性(Female)。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模小secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值