2024 Mathorcup高校数学建模挑战赛(C题)| 物流网络货量预测 | 建模秘籍&文章代码思路大全

铛铛!小秘籍来咯!
小秘籍团队独辟蹊径,以ARIMA时序预测,目标规划等强大工具,构建了解决复杂问题的独特方案。比例分配,负载均衡的妙用,为降低非法野生动物贸易提供新视角。通过综合分析,描绘出概率、成功与关键因素之间的精妙关系,为客户量身打造创新解决方案。小秘籍团队,始终引领着建模问题求解的风潮。 抓紧小秘籍,我们出发吧~
抓紧小秘籍,我们出发吧~
完整内容可以在文章末尾领取!

在这里插入图片描述

第一个问题是建立货量预测模型,对57个分拣中心未来30天每天及每小时的货量进行预测。

假设每个分拣中心的货量预测值为 P i , d P_{i,d} Pi,d,其中 i i i表示分拣中心的编号, d d d表示日期, h h h表示小时。根据题目描述,我们可以得到如下公式:

P i , d = f ( H i , d − 1 , H i , d − 2 , . . . , H i , d − 4 , W i , T d ) P_{i,d} = f(H_{i,d-1}, H_{i,d-2}, ..., H_{i,d-4}, W_i, T_d) Pi,d=f(Hi,d1,Hi,d2,...,Hi,d4,Wi,Td)

其中, H i , d − j H_{i,d-j} Hi,dj表示分拣中心 i i i d − j d-j dj天的货量, W i W_i Wi表示分拣中心 i i i的物流网络配置信息, T d T_d Td表示日期 d d d的特征信息。

在这个模型中,我们使用历史货量、物流网络配置信息和日期特征信息来预测未来的货量。历史货量可以反映出分拣中心的日常运作情况,物流网络配置信息可以反映出分拣中心之间的运输线路关系,日期特征信息可以反映出节假日等因素对货量的影响。

具体的预测方法可以使用多种机器学习算法,如线性回归、决策树、随机森林等。我们可以使用历史数据来训练模型,并通过交叉验证等方法来选择最优的算法和参数。

对于每小时的货量预测,可以将时间粒度缩小,使用同样的方法来预测每个分拣中心每小时的货量。

最终的预测结果可以写入结果表1和表2中。

对于每天的货量预测,可以使用ARIMA(Autoregressive Integrated Moving Average)模型。ARIMA模型是一种基于时间序列的统计模型,可以将时间序列数据转换为平稳序列,并通过自相关和偏相关函数的分析,确定最佳的自回归和移动平均参数。假设时间序列为 x t {x_t} xt,其中 t t t表示时间,ARIMA模型可以表示为:

ϕ ( B ) ( 1 − B ) d x t = θ ( B ) ϵ t \phi(B)(1-B)^d x_t = \theta(B)\epsilon_t ϕ(B)(1B)dxt=θ(B)ϵt

其中, B B B为延迟算子, ϕ ( B ) \phi(B) ϕ(B) θ ( B ) \theta(B) θ(B)为自回归和移动平均算子, d d d为差分阶数, ϵ t \epsilon_t ϵt为白噪声。通过对历史货量数据进行差分,将非平稳序列转换为平稳序列,然后根据自相关和偏相关函数的图像,确定最佳的模型参数,从而进行未来每天的货量预测。

其次,对于每小时的货量预测,可以使用ARIMAX(Autoregressive Integrated Moving Average with Exogenous Variables)模型。ARIMAX模型在ARIMA模型的基础上,增加了外部变量的影响,因此可以更准确地预测货量。假设外部变量为 z t {z_t} zt,ARIMAX模型可以表示为:

ϕ ( B ) ( 1 − B ) d x t = θ ( B ) ϵ t + ψ ( B ) z t \phi(B)(1-B)^d x_t = \theta(B)\epsilon_t + \psi(B)z_t ϕ(B)(1B)dxt=θ(B)ϵt+ψ(B)zt

其中, ψ ( B ) \psi(B) ψ(B)为外部变量的影响项。通过对历史每小时货量数据进行差分,然后根据自相关和偏相关函数的图像,确定最佳的模型参数,从而进行未来每小时的货量预测。

需要注意的是,对于分拣中心数量较多的情况,建议将分拣中心按照地理位置或其他相关特征分组,分别建立模型进行预测,可以提高预测的准确性。

在模型建立完成后,可以利用历史数据进行模型参数的优化,比如通过交叉验证等方法确定模型的最佳参数,从而提高预测的准确性。最后,根据预测结果,可以制定相应的调度和调配计划,合理安排分拣中心的货量和人员,从而提高物流网络的运作效率和降低成本。

解:

我们可以根据历史货量数据,构建一个时间序列模型来预测未来的货量。首先,对于每个分拣中心,我们可以将过去的每天货量数据进行平滑处理,得到一个近似的每日货量趋势。具体来说,我们可以使用移动平均法来平滑数据,即计算过去k天的平均货量作为当天的预测值。这样,我们就可以得到每个分拣中心过去4个月的每天平滑后的货量数据。

假设第 i i i个分拣中心过去4个月的每天平滑后的货量数据为 y i ( t ) , t = 1 , 2 , . . . , 120 y_i(t), t=1,2,...,120 yi(t),t=1,2,...,120。其中, t t t表示时间, t = 1 t=1 t=1表示过去4个月的第一天, t = 120 t=120 t=120表示过去4个月的最后一天。我们可以使用指数平滑法来拟合这个平滑后的货量数据,得到一个近似的每日货量趋势函数 f i ( t ) f_i(t) fi(t)。具体来说,我们可以使用一阶指数平滑法,即:

f i ( t ) = α y i ( t − 1 ) + ( 1 − α ) f i ( t − 1 ) , t = 2 , 3 , . . . , 120 f_i(t)=\alpha y_i(t-1)+(1-\alpha)f_i(t-1), t=2,3,...,120 fi(t)=αyi(t1)+(1α)fi(t1),t=2,3,...,120

其中, α \alpha α称为平滑系数,它控制着过去数据对预测结果的影响程度。 α \alpha α的取值范围为 0 < α < 1 0<\alpha<1 0<α<1,一般来说, α \alpha α越大,过去数据对预测结果的影响越大。根据经验,我们可以取 α = 0.3 \alpha=0.3 α=0.3。这样,我们就可以得到每个分拣中心的每日货量趋势函数 f i ( t ) f_i(t) fi(t)

接下来,我们可以使用指数平滑法来预测未来的货量。具体来说,我们可以使用一阶指数平滑法来预测未来的每日货量,即:

y ^ i ( t + 1 ) = α y i ( t ) + ( 1 − α ) y ^ i ( t ) , t = 1 , 2 , . . . , 30 \hat{y}_i(t+1)=\alpha y_i(t)+(1-\alpha)\hat{y}_i(t), t=1,2,...,30 y^i(t+1)=αyi(t)+(1α)y^i(t),t=1,2,...,30

其中, y ^ i ( t + 1 ) \hat{y}_i(t+1) y^i(t+1)表示第 i i i个分拣中心未来30天每天的货量预测值。

为了更准确地预测每小时的货量,我们可以根据过去30天的每小时货量数据,计算出每小时的平均货量,并使用指数平滑法来预测未来的每小时货量。具体来说,我们可以使用一阶指数平滑法来预测未来的每小时货量,即:

y ^ i ( h + 1 ) = α y i ( h ) + ( 1 − α ) y ^ i ( h ) , h = 1 , 2 , . . . , 24 \hat{y}_i(h+1)=\alpha y_i(h)+(1-\alpha)\hat{y}_i(h), h=1,2,...,24 y^i(h+1)=αyi(h)+(1α)y^i(h),h=1,2,...,24

其中, y ^ i ( h + 1 ) \hat{y}_i(h+1) y^i(h+1)表示第 i i i个分拣中心未来30天每小时的货量预测值, h h h表示小时, h = 1 h=1 h=1表示过去30天的第一个小时, h = 24 h=24 h=24表示过去30天的最后一个小时。

综上所述,我们可以使用指数平滑法来预测未来的货量,具体步骤如下:

  1. 对每个分拣中心的过去4个月每天货量数据进行平滑处理,得到近似的每日货量趋势函数 f i ( t ) , t = 1 , 2 , . . . , 120 f_i(t), t=1,2,...,120 fi(t),t=1,2,...,120

  2. 使用一阶指数平滑法来预测未来的每日货量,即:

y ^ i ( t + 1 ) = α y i ( t ) + ( 1 − α ) y ^ i ( t ) , t = 1 , 2 , . . . , 30 \hat{y}_i(t+1)=\alpha y_i(t)+(1-\alpha)\hat{y}_i(t), t=1,2,...,30 y^i(t+1)=αyi(t)+(1α)y^i(t),t=1,2,...,30
在这里插入图片描述

  1. 根据过去30天的每小时货量数据,计算出每小时的平均货量,并使用一阶指数平滑法来预测未来的每小时货量,即:

y ^ i ( h + 1 ) = α y i ( h ) + ( 1 − α ) y ^ i ( h ) , h = 1 , 2 , . . . , 24 \hat{y}_i(h+1)=\alpha y_i(h)+(1-\alpha)\hat{y}_i(h), h=1,2,...,24 y^i(h+1)=αyi(h)+(1α)y^i(h),h=1,2,...,24

最终,我们得到了57个分拣中心未来30天每天及每小时的货量预测值。这些预测值可以写入结果表1和表2中。

代码如下:

import pandas as pd
from sklearn.linear_model import LinearRegression

#读取附件1和附件2的数据
df_daily = pd.read_excel('附件1.xlsx')
df_hourly = pd.read_excel('附件2.xlsx')

#将数据按分拣中心分组
group_daily = df_daily.groupby('分拣中心').sum()
group_hourly = df_hourly.groupby('分拣中心').sum()

#对每个分拣中心建立线性回归模型
model_daily = LinearRegression()
model_hourly = LinearRegression()

#用过去4个月的每日货量作为自变量,建立每天货量的模型
model_daily.fit(group_daily['过去4个月每日货量'].values.reshape(-1,1), group_daily['未来30天每天货量'].values.reshape(-1,1))

#用过去30天的每小时货量作为自变量,建立每小时货量的模型
model_hourly.fit(group_hourly['过去30天每小时货量'].values.reshape(-1,1), group_hourly['未来30天每小时货量'].values.reshape(-1,1))

#预测未来30天每天的货量
daily_pred = model_daily.predict(group_daily['过去4个月每日货量'].values.reshape(-1,1))
#将预测结果写入结果表1
group_daily['预测未来30天每天货量'] = daily_pred

#预测未来30天每小时的货量
hourly_pred = model_hourly.predict(group_hourly['过去30天每小时货量'].values.reshape(-1,1))
#将预测结果写入结果表2
group_hourly['预测未来30天每小时货量'] = hourly_pred

#将结果保存为excel文件
group_daily.to_excel('结果表1.xlsx')
group_hourly.to_excel('结果表2.xlsx')

第二个问题是基于过去90天各分拣中心之间的运输线路平均货量以及未来30天分拣中心之间运输线路的变化情况,对57个分拣中心未来30天每天及每小时的货量进行预测,并将预测结果写入结果表3和表4中。

H i , j , t H_{i,j,t} Hi,j,t为分拣中心i在t时刻的货量, R i , j , t R_{i,j,t} Ri,j,t为分拣中心i到j的运输线路, C i , j , t C_{i,j,t} Ci,j,t为分拣中心i到j的货量占比, H i , t H_{i,t} Hi,t为分拣中心i在t时刻的小时货量, D i , j D_{i,j} Di,j为分拣中心i到j的距离, T T T为未来的时间段, C i , j , t C_{i,j,t} Ci,j,t可以按照线路的平均货量计算,即 C i , j , t = R i , j , t ∑ j = 1 57 R i , j , t C_{i,j,t}=\frac{R_{i,j,t}}{\sum_{j=1}^{57}R_{i,j,t}} Ci,j,t=j=157Ri,j,tRi,j,t,则问题2可以建模为如下的优化问题: min ⁡ H i , t , H i , j , t ∑ t = 1 T ∑ i = 1 57 ∑ j = 1 57 H i , j , t D i , j s.t. H i , t = ∑ j = 1 57 H i , j , t , i = 1 , … , 57 , t = 1 , … , T H i , t = ∑ j = 1 57 C i , j , t H i , j , t , i = 1 , … , 57 , t = 1 , … , T H i , j , t ≥ 0 , i = 1 , … , 57 , j = 1 , … , 57 , t = 1 , … , T \begin{split}\min_{H_{i,t},H_{i,j,t}}&\sum_{t=1}^T\sum_{i=1}^{57}\sum_{j=1}^{57}H_{i,j,t}D_{i,j}\\\text{s.t.}&H_{i,t}=\sum_{j=1}^{57}H_{i,j,t},i=1,\dots,57,t=1,\dots,T\\&H_{i,t}=\sum_{j=1}^{57}C_{i,j,t}H_{i,j,t},i=1,\dots,57,t=1,\dots,T\\&H_{i,j,t}\geq 0,i=1,\dots,57,j=1,\dots,57,t=1,\dots,T\end{split} Hi,t,Hi,j,tmins.t.t=1Ti=157j=157Hi,j,tDi,jHi,t=j=157Hi,j,t,i=1,,57,t=1,,THi,t=j=157Ci,j,tHi,j,t,i=1,,57,t=1,,THi,j,t0,i=1,,57,j=1,,57,t=1,,T其中第一个约束保证每个分拣中心的每天货量等于每小时货量之和,第二个约束保证每个分拣中心的每天货量等于其到其他分拣中心的运输货量之和。该模型的目标函数为总的运输距离,即希望通过调整每个分拣中心的货量,使得总的运输距离最小。

第二个问题的目标是根据过去90天各分拣中心之间的运输线路平均货量以及未来30天分拣中心之间运输线路的变化情况,预测未来30天每天及每小时的货量。为了解决这个问题,可以采用时间序列预测的方法,即通过分析历史数据的趋势和周期性,来预测未来一段时间的数据。具体而言,可以采用ARIMA模型(自回归移动平均模型)来进行预测。

ARIMA模型是一种常用的时间序列分析方法,它能够很好地处理非平稳的时间序列数据。ARIMA模型的核心思想是通过对时间序列数据进行差分运算,使其变成平稳的数据,然后再建立自回归模型和移动平均模型,来拟合时间序列数据的趋势和周期性。ARIMA模型的参数包括自回归阶数p、差分阶数d和移动平均阶数q,通过对这些参数的选择和拟合,可以得到最优的ARIMA模型来进行预测。

在本问题中,可以将每个分拣中心的每天货量作为一个时间序列数据,对其进行差分运算,获取平稳的数据。然后,根据过去90天各分拣中心之间的运输线路平均货量以及未来30天分拣中心之间运输线路的变化情况,来选择ARIMA模型的参数。最后,使用拟合好的ARIMA模型来预测未来30天每个分拣中心的每天及每小时货量,将预测结果写入结果表3和表4中。

在选择ARIMA模型参数的过程中,可以使用一些常用的方法,比如自相关函数(ACF)和偏自相关函数(PACF)来辅助选择p和q的值。同时,可以通过一些评价指标来评估模型的拟合效果,比如均方根误差(RMSE)和平均绝对误差(MAE),以此来选择最优的模型。

总的来说,通过建立ARIMA模型,可以很好地解决第二个问题,预测未来30天每天及每小时的货量,并将预测结果写入结果表3和表4中。同时,通过选择合适的模型参数和评价指标,可以提高预测的准确性和稳定性。

问题2:建立货量预测模型,对57个分拣中心未来30天每天及每小时的货量进行预测,将预测结果写入结果表3和表4中。

解决方案:

根据问题描述,问题2可以分为两部分:一是预测57个分拣中心未来30天每天的货量,二是预测57个分拣中心未来30天每小时的货量。以下分别介绍两部分的解决方案。

  1. 预测57个分拣中心未来30天每天的货量

首先,根据过去90天各分拣中心之间的运输线路平均货量,可以得到每个分拣中心之间的平均每天货量,记为 A i j A_{ij} Aij,其中 i i i为起点分拣中心, j j j为终点分拣中心。然后,根据未来30天分拣中心之间运输线路的变化情况,可以得到每个分拣中心之间的每天运输货量的变化情况,记为 B i j B_{ij} Bij。因此,未来30天每天每个分拣中心的总货量可以表示为:

C i = ∑ j = 1 57 ( A i j + B i j ) C_{i}=\sum_{j=1}^{57} (A_{ij}+B_{ij}) Ci=j=157(Aij+Bij)

其中, C i C_{i} Ci表示第 i i i个分拣中心未来30天每天的总货量。将该公式应用到每个分拣中心,就可以得到57个分拣中心未来30天每天的货量预测结果,即结果表3中的数据。

  1. 预测57个分拣中心未来30天每小时的货量

根据过去30天每小时的货量数据,可以得到每个分拣中心过去30天每小时的平均货量,记为 D i D_{i} Di,其中 i i i为分拣中心。然后,根据未来30天每小时的货量变化情况,可以得到每个分拣中心未来30天每小时的总货量变化情况,记为 E i E_{i} E

2019年MathorCup高校数学建模挑战赛D 2019年第九届MathorCup高校数学建模挑战赛 竞赛信息 竞赛简介 为了培养学生的创新意识及运用数学方法和计算机技术解决实际问的能力,中国优选法统筹法与经济数学研究会决定主办2019年第九届MathorCup高校数学建模挑战赛,欢迎各高等院校按照竞赛章程及有关规定组织同学报名参赛。 组织机构 主办单位:中国优选法统筹法与经济数学研究会 【中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会】 竞赛时间 报名时间:即日起至2019年 4 月 10日 12:00 竞赛时间:2019年4 月 11 日08:00至2019年 4 月 15 日08:00 参赛对象 普通高校全日制在校生(研究生、本科生、专科生)以队为单位参赛,每队不超过3人,不允许跨校组队参赛。 参赛费用 每支队伍需缴纳200元的报名费用。 奖项设置 参赛队伍:全国一等奖(约5%)、全国二等奖(约15%)、全国三等奖(约30%),从一等奖队伍中经过决赛答辩决出4支队伍获得“MathorCup”荣誉奖杯; 组织单位:优秀组织单位、优秀组织社团、优秀组织个人; 其它奖励政策:参见《 MathorCup高校数学建模挑战赛奖励细则》( 可从官方主页下载)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模小secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值