铛铛!小秘籍来咯!
小秘籍团队独辟蹊径,构建了这一题的详细解答哦! 为大家量身打造创新解决方案。小秘籍团队,始终引领着建模问题求解的风潮。
抓紧小秘籍,我们出发吧~
让我们看看五一杯的B题!
完整内容可以在文章末尾领取!
问题1:给出各(起点,终点)对之间交通需求分配到对应路径上的交通量,使得网络中任意1条路段出现突发状况时,网络中所有交通需求的期望可达率最大。
假设交通网络中共有n个节点,m条路段,交通需求共有k个(起点,终点)对。
设交通需求分配到对应路径上的交通量为x,其中x为一个n*m的矩阵,表示每条路段上的交通量。
设每个(起点,终点)对之间的交通需求为d,其中d为一个k*1的向量,表示每个(起点,终点)对之间的交通需求量。
设每个(起点,终点)对之间的可达率为p,其中p为一个k*1的向量,表示每个(起点,终点)对之间的可达率。
则可达率p的计算公式为:
p = ∑ i = 1 k x i ∑ i = 1 k d i p=\frac{\sum_{i=1}^{k}x_{i}}{\sum_{i=1}^{k}d_{i}} p=∑i=1kdi∑i=1kxi
其中, x i x_{i} xi表示第i个(起点,终点)对分配到的交通量, d i d_{i} di表示第i个(起点,终点)对的交通需求量。
为了使得网络中任意1条路段出现突发状况时,网络中所有交通需求的期望可达率最大,需要最大化可达率p的期望值。即最大化以下目标函数:
max x ∑ i = 1 k p i = max x ∑ i = 1 k ∑ j = 1 m x i j ∑ j = 1 m d i j \max_{x}\sum_{i=1}^{k}p_{i}=\max_{x}\sum_{i=1}^{k}\frac{\sum_{j=1}^{m}x_{ij}}{\sum_{j=1}^{m}d_{ij}} xmaxi=1∑kpi=xmaxi=1∑k∑j=1mdij∑j=1mxij
其中, x i j x_{ij} xij表示第i个(起点,终点)对分配到第j条路段上的交通量, d i j d_{ij} dij表示第i个(起点,终点)对的第j条路段的交通需求量。
又因为每个(起点,终点)对之间使用的路径数不超过5,所以需要添加以下约束条件:
∑ j = 1 m x i j ⩽ 5 , i = 1 , 2 , ⋯ , k \sum_{j=1}^{m}x_{ij}\leqslant5,\quad i=1,2,\cdots,k j=1∑mxij⩽5,i=1,2,⋯,k
∑ i = 1 k x i j ⩽ 5 , j = 1 , 2 , ⋯ , m \sum_{i=1}^{k}x_{ij}\leqslant5,\quad j=1,2,\cdots,m i=1∑kxij⩽5,j=1,2,⋯,m
x i j ⩾ 0 , i = 1 , 2 , ⋯ , k , j = 1 , 2 , ⋯ , m x_{ij}\geqslant0,\quad i=1,2,\cdots,k,\quad j=1,2,\cdots,m xij⩾0,i=1,2,⋯,k,j=1,2,⋯,m
综上所述,第一个问题的数学模型为:
max x ∑ i = 1 k ∑ j = 1 m x i j ∑ j = 1 m d i j \max_{x}\sum_{i=1}^{k}\frac{\sum_{j=1}^{m}x_{ij}}{\sum_{j=1}^{m}d_{ij}} xmaxi=1∑k∑j=1mdij∑j=1mxij
s . t . ∑ j = 1 m x i j ⩽ 5 , i = 1 , 2 , ⋯ , k s.t.\quad\sum_{j=1}^{m}x_{ij}\leqslant5,\quad i=1,2,\cdots,k s.t.j=1∑mxij⩽5,i=1,2,⋯,k
∑ i = 1 k x i j ⩽ 5 , j = 1 , 2 , ⋯ , m \sum_{i=1}^{k}x_{ij}\leqslant5,\quad j=1,2,\cdots,m i=1∑kxij⩽5,j=1,2,⋯,m
x i j ⩾ 0 , i = 1 , 2 , ⋯ , k , j = 1 , 2 , ⋯ , m x_{ij}\geqslant0,\quad i=1,2,\cdots,k,\quad j=1,2,\cdots,m xij⩾0,i=1,2,⋯,k,j=1,2,⋯,m
其中, x i j x_{ij} xij表示第i个(起点,终点)对分配到第j条路段上的交通量, d i j d_{ij} dij表示第i个(起点,终点)对的第j条路段的交通需求量。
假设交通网络中共有N条路段,每条路段的容量为C,每个(起点,终点)对之间的交通需求为D,其中D可以表示为一个NN的矩阵,矩阵中第i行第j列的元素表示从起点i到终点j的交通需求量。同时,我们定义一个NN的矩阵P,其中P的第i行第j列的元素表示从起点i到终点j的路径分配的交通量。
根据题目要求,我们需要使得网络中任意1条路段出现突发状况时,网络中所有交通需求的期望可达率最大。因此,我们可以定义一个目标函数,即最大化网络中所有交通需求的期望可达率。根据题目中的例子,可达率可以表示为:
R = ∑ i , j P i , j ∑ i , j D i , j R = \frac{\sum_{i,j}P_{i,j}}{\sum_{i,j}D_{i,j}} R=∑i,jDi,j∑i,jPi,j
其中, ∑ i , j P i , j \sum_{i,j}P_{i,j} ∑i,jPi,j表示网络中所有路径分配的交通量之和, ∑ i , j D i , j \sum_{i,j}D_{i,j} ∑i,jDi,j表示网络中所有交通需求之和。
为了使得网络中任意1条路段出现突发状况时,网络中所有交通需求的期望可达率最大,我们需要满足以下约束条件:
- 路径分配的交通量不能超过交通需求量,即 P i , j ≤ D i , j P_{i,j} \leq D_{i,j} Pi,j≤Di,j;
- 每个(起点,终点)对之间的路径数不超过5,即每行P的元素个数不超过5;
- 每条路段的交通量不能超过容量,即 ∑ i P i , j ≤ C \sum_{i}P_{i,j} \leq C ∑iPi,j≤C。
综上所述,我们可以建立如下数学模型:
max ∑ i , j P i , j ∑ i , j D i , j s . t . { P i , j ≤ D i , j , ∀ i , j ∑ i P i , j ≤ C , ∀ j ∑ j P i , j ≤ 5 , ∀ i P i , j ≥ 0 , ∀ i , j \begin{align} &\max \frac{\sum_{i,j}P_{i,j}}{\sum_{i,j}D_{i,j}} \\ &s.t. \\ &\begin{cases} P_{i,j} \leq D_{i,j}, \forall i,j \\ \sum_{i}P_{i,j} \leq C, \forall j \\ \sum_{j}P_{i,j} \leq 5, \forall i \\ P_{i,j} \geq 0, \forall i,j \end{cases} \end{align} max∑i,jDi,j∑i,jPi,js.t.⎩ ⎨ ⎧Pi,j≤Di,j,∀i,j∑iPi,j≤C,∀j∑jPi,j≤5,∀iPi,j≥0,∀i,j
其中, P