铛铛!小秘籍来咯!
小秘籍团队独辟蹊径,运用负载均衡,多目标规划等强大工具,构建了这一题的详细解答哦! 为大家量身打造创新解决方案。小秘籍团队,始终引领着建模问题求解的风潮。
抓紧小秘籍,我们出发吧~
让我们看看电工杯的A题!
完整内容可以在文章末尾领取!
该段文字的第一个问题是对两份食谱做出全面的膳食营养评价。
设男生每日摄入的能量为 x 1 x_1 x1,女生每日摄入的能量为 x 2 x_2 x2,则根据题目中给出的膳食营养评价要求,可以列出如下的约束条件:
-
能量摄入量与目标相差不超过10%,即 ∣ x 1 − 2700 ∣ ≤ 270 |x_1-2700| \le 270 ∣x1−2700∣≤270, ∣ x 2 − 2200 ∣ ≤ 220 |x_2-2200| \le 220 ∣x2−2200∣≤220。
-
蛋白质摄入量占总能量的10%-15%,即 540 ≤ 0.1 x 1 ≤ 0.15 x 1 ≤ 810 540 \le 0.1x_1 \le 0.15x_1 \le 810 540≤0.1x1≤0.15x1≤810, 440 ≤ 0.1 x 2 ≤ 0.15 x 2 ≤ 660 440 \le 0.1x_2 \le 0.15x_2 \le 660 440≤0.1x2≤0.15x2≤660。
-
脂肪摄入量占总能量的20%-30%,即 540 ≤ 0.2 x 1 ≤ 0.3 x 1 ≤ 810 540 \le 0.2x_1 \le 0.3x_1 \le 810 540≤0.2x1≤0.3x1≤810, 440 ≤ 0.2 x 2 ≤ 0.3 x 2 ≤ 660 440 \le 0.2x_2 \le 0.3x_2 \le 660 440≤0.2x2≤0.3x2≤660。
-
碳水化合物摄入量占总能量的50%-65%,即 1350 ≤ 0.5 x 1 ≤ 0.65 x 1 ≤ 1755 1350 \le 0.5x_1 \le 0.65x_1 \le 1755 1350≤0.5x1≤0.65x1≤1755, 1100 ≤ 0.5 x 2 ≤ 0.65 x 2 ≤ 1430 1100 \le 0.5x_2 \le 0.65x_2 \le 1430 1100≤0.5x2≤0.65x2≤1430。
-
非产能主要营养素的摄入量尽可能接近参考摄入量,即 C A i ≈ R A i CA_i \approx RA_i CAi≈RAi, i = 1 , 2 , . . . , 7 i=1,2,...,7 i=1,2,...,7,其中 C A i CA_i CAi表示实际摄入量, R A i RA_i RAi表示参考摄入量,分别对应钙、铁、锌、维生素A、维生素B1、维生素B2、维生素C。
-
餐次比尽可能满足早餐25%-35%,中餐、晚餐各30%-40%,即 0.25 x 1 ≤ 675 0.25x_1 \le 675 0.25x1≤675, 0.3 x 1 ≤ 810 0.3x_1 \le 810 0.3x1≤810, 0.4 x 1 ≤ 1080 0.4x_1 \le 1080 0.4x1≤1080, 0.3 x 2 ≤ 660 0.3x_2 \le 660 0.3x2≤660, 0.4 x 2 ≤ 880 0.4x_2 \le 880 0.4x2≤880, 0.4 x 2 ≤ 880 0.4x_2 \le 880 0.4x2≤880。
综上所述,可以得到如下的数学模型:
min ( ∣ x 1 − 2700 ∣ + ∣ x 2 − 2200 ∣ ) s . t . 540 ≤ 0.1 x 1 ≤ 0.15 x 1 ≤ 810 1350 ≤ 0.5 x 1 ≤ 0.65 x 1 ≤ 1755 540 ≤ 0.2 x 1 ≤ 0.3 x 1 ≤ 810 C A i ≈ R A i , i = 1 , 2 , . . . , 7 0.25 x 1 ≤ 675 0.3 x 1 ≤ 810 0.4 x 1 ≤ 1080 0.3 x 2 ≤ 660 0.4 x 2 ≤ 880 0.4 x 2 ≤ 880 \begin{equation} \begin{aligned} &\min (|x_1-2700|+|x_2-2200|)\\ &s.t.\\ &540 \le 0.1x_1 \le 0.15x_1 \le 810\\ &1350 \le 0.5x_1 \le 0.65x_1 \le 1755\\ &540 \le 0.2x_1 \le 0.3x_1 \le 810\\ &CA_i \approx RA_i, i=1,2,...,7\\ &0.25x_1 \le 675\\ &0.3x_1 \le 810\\ &0.4x_1 \le 1080\\ &0.3x_2 \le 660\\ &0.4x_2 \le 880\\ &0.4x_2 \le 880 \end{aligned} \end{equation} min(∣x1−2700∣+∣x2−2200∣)s.t.540≤0.1x1≤0.15x1≤8101350≤0.5x1≤0.65x1≤1755540≤0.2x1≤0.3x1≤810CAi≈RAi,i=1,2,...,70.25x1≤6750.3x1≤8100.4x1≤10800.3x2≤6600.4x2