二叉搜索树中的插入操作(力扣450)

文章介绍了在给定BST中插入新值的详细步骤,包括递归遍历、终止条件和新节点创建。示例展示了如何在不同情况下操作BST。
摘要由CSDN通过智能技术生成

解题思路:因为是二叉搜索树,所以肯定有一个位置的叶子节点可以直接插入,我们只需要递归遍历找到位置罢了。确认终止条件:遍历到空时停止,同时创建新节点,返回新节点,让下一个节点接着

具体代码:

class Solution {

public:

    TreeNode* insertIntoBST(TreeNode* root, int val) {

       if(root==nullptr){

        TreeNode*newNode=new struct TreeNode(val);

        return newNode;

       }

        if(val<root->val){

            root->left=insertIntoBST(root->left,val);

        }

        if(val>root->val){

            root->right=insertIntoBST(root->right,val);

        }

    return root;

  }

};

具体题目:

给定二叉搜索树(BST)的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。

示例 1:

输入:root = [4,2,7,1,3], val = 5
输出:[4,2,7,1,3,5]
解释:另一个满足题目要求可以通过的树是:

示例 2:

输入:root = [40,20,60,10,30,50,70], val = 25
输出:[40,20,60,10,30,50,70,null,null,25]

示例 3:

输入:root = [4,2,7,1,3,null,null,null,null,null,null], val = 5
输出:[4,2,7,1,3,5]

提示:

  • 树中的节点数将在 [0, 104]的范围内。
  • -108 <= Node.val <= 108
  • 所有值 Node.val 是 独一无二 的。
  • -108 <= val <= 108
  • 保证 val 在原始BST中不存在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值