传送门:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5868
Little Sub has a sequence . Now he has a problem for you.
Two sequences of length and of length are considered isomorphic when they meet all the following two conditions:
- ;
- Define as the number of times integer occur in sequence . For each integer in , always holds.
Now we have operations for . and there are two kinds of operations:
- 1 x y: Change to (, );
- 2: Query for the greatest () that there exist two integers and () and is isomorphic with . Specially, if there is no such , please output "-1" (without quotes) instead.
Input
There are multiple test cases. The first line of the input contains an integer (), indicating the number of test cases. For each test case:
The first line ontains two integers .
The second line contains integers ().
In the following lines, each line contains one operation. The format is described above.
Output
For each operation 2, output one line containing the answer.
Sample Input
1 3 5 1 2 3 2 1 3 2 2 1 1 2 2
Sample Output
-1 1 2
题意概括:
给出 一个长度为 N 的序列, 和 M 次操作.
有两种操作:
1 id y : 把序列中第 id 个位置的值 修改成 y
2 : 查询这个序列中能满足两个子串“相同”的最大长度。
两个子串相同的条件:子串的数字种类和每种种类的数量相同,当然两个子串的起点不同(理所当然,否则这道题就没意义了)。
解题思路:
很明显就是维护每种 相同的值的 下标(位置)的 最大差值。
因为除了两端的值,中间公共部分 无论是数量还是种类肯定相同。
那么问题就转换成了如何维护每种值 value 的位置最大差值。
用 set 存每种 value 的下标,最多需要 20w个(最坏的情况就是每次操作都是插入新的值)
用 multiset 维护 最大差值。
值 val 的范围是 【1, 1e9】,需要离散化。
在线 map 离散化 RE。
离线 lower_bound() AC。
AC code:
1 #include <set> 2 #include <map> 3 #include <cstdio> 4 #include <cstring> 5 #include <iostream> 6 #include <algorithm> 7 #define INF 0x3f3f3f3f 8 #define LL long long 9 using namespace std; 10 const int MAXN = 2e5+10; 11 const int MAXM = 2e5+10; 12 int a[MAXN]; //存实际序列 13 int b[MAXN]; //存所有序列包括原序列的值和修改的值,用于离散化 14 int c[MAXN]; //存操作 15 int x[MAXN]; //存修改的下标 16 int y[MAXN]; //存修改的值 17 set<int>ss[MAXM]; ///维护每一种值的起点和终点 18 multiset<int>ans; ///维护两点距离差 19 //map<int, int>mmp; 20 int N, M; 21 22 int main() 23 { 24 int cnt = 0; 25 int T_case; 26 scanf("%d", &T_case); 27 while(T_case--){ 28 29 int cnt = 0; 30 ans.clear(); 31 scanf("%d %d", &N, &M); 32 for(int i = 1; i <= N; i++){ 33 scanf("%d", &a[i]); 34 b[++cnt] = a[i]; 35 } 36 37 for(int i = 1; i <= M; i++){ 38 scanf("%d", &c[i]); 39 if(c[i] == 1){ 40 scanf("%d %d",&x[i], &y[i]); 41 b[++cnt] = y[i]; 42 } 43 } 44 sort(b+1, b+1+cnt); 45 cnt = unique(b+1, b+cnt+1)-(b+1); ///离散化后的数据总量 46 47 for(int i = 1; i <= cnt; i++){ ///初始化 48 ss[i].clear(); 49 } 50 51 for(int i = 1; i <= N; i++){ 52 a[i] = lower_bound(b+1, b+cnt+1, a[i])-b; ///对原序列的值进行离散化 53 ss[a[i]].insert(i); 54 } 55 56 for(int i = 1; i <= cnt; i++){ 57 if(!ss[i].empty()) ans.insert(*--ss[i].end() - *ss[i].begin()); ///初始化两点距离差 58 } 59 60 for(int i = 1; i <= M; i++){ 61 if(c[i] == 1){ ///删除操作 62 int no = a[x[i]]; 63 ans.erase(ans.find( *--ss[no].end()-*ss[no].begin()) ); 64 ss[no].erase(ss[no].find(x[i])); 65 if(!ss[no].empty()) ans.insert(*--ss[no].end()-*ss[no].begin()); 66 67 68 y[i] = lower_bound(b+1, b+cnt+1, y[i])-b; ///增加操作 69 a[x[i]] = y[i]; 70 no = y[i]; 71 if(!ss[no].empty()) ans.erase(ans.find( *--ss[no].end()-*ss[no].begin()) ); 72 ss[no].insert(x[i]); 73 ans.insert(*--ss[no].end()-*ss[no].begin()); 74 } 75 else{ 76 int res = -1; 77 if(!ans.empty()){ 78 res = *--ans.end(); 79 } 80 if(res == 0) res = -1; 81 printf("%d\n", res); 82 } 83 } 84 85 86 } 87 return 0; 88 }