- 题目描述
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
分别有大小为m和n的有序数组nums1和nums2。
求两个排序数组的中值。总的运行时复杂度应该是O(log (m+n))。
您可以假设nums1和nums2不能同时为空。
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
- 思路分析:
需求是输出两个有序数组的中值,想要实现很是简单,最直接粗暴的方法是把两个数组合并,找到相应元素,时间复杂度为O(m+n)。但题目明确要求时间复杂度需要控制在O(log(m+n)),就必须思考优化版方法啦。
小陌目前的优化方法是用寻找第k小数(因为给出的两个数组皆有序,则k对应(m+n)/2):
每次比较两个数组的第k/2个大的数:
- nums1[k/2] = nums[k/2],那么这个数就是我们要找的第K小数
- nums1[k/2] > nums[k/2],则说明第K小数不在nums2中前k/2个元素,可排除
- nums1[k/2] < nums[k/2],与2同理,排除nums1中前k/2个元素
如此操作,每次都能排除k/2的元素(递归过程中,可能会出现数组个数不到k/2的情况,并不会影响算法,从另一个数组进行补充,多取相应元素即可)。
当k=1时,找到第K小数,结束递归
- 原码附录:
- 简单粗暴法
class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int all = nums1.length+nums2.length; int[] result = new int[all]; for(int i=0;i<all;i++){ result[i] = (i<nums1.length)?nums1[i]:nums2[i-nums1.length]; } Arrays.sort(result); return (all%2) ==1 ? result[(all-1)/2]:(double)(result[all/2]+result[all/2-1])/2; } }
- top k算法思想
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
if((nums1.length+nums2.length)%2==0){
return (findK(nums1,0,nums1.length-1,nums2,0,nums2.length-1,(nums1.length+nums2.length)/2)
+findK(nums1,0,nums1.length-1,nums2,0,nums2.length-1,(nums1.length+nums2.length)/2+1))/2.0;
}
else{
return findK(nums1,0,nums1.length-1,nums2,0,nums2.length-1,(nums1.length+nums2.length)/2+1);
}
}
public int findK(int[] nums1,int n1,int n2,int[] nums2,int m1,int m2,int k){
int i = n2 - n1 +1;
int j = m2 - m1 +1;
if(i>j){
return findK(nums2,m1,m2,nums1,n1,n2,k);
}
if(i == 0){
return nums2[m1+k-1];
}
if(k == 1){
return Math.min(nums1[n1],nums2[m1]);
}
int mid1 = Math.min(k/2,i);
int mid2 = k - mid1;
if(nums1[n1+mid1-1]==nums2[m1+mid2-1]){
return nums1[n1+mid1-1];
}
else if(nums1[n1+mid1-1]>nums2[m1+mid2-1]){
return findK(nums1,n1,n1+mid1-1,nums2,m1+mid2,m2,k-mid2);
}
else{
return findK(nums1,n1+mid1,n2,nums2,m1,m2+mid2-1,k-mid1);
}
}
}
以下内容为可耻的自我推销,完全可忽略(。•́ωก̀。).。
此处厚脸皮的安利小透明公众号 林夏夏
夏夏大大的英雄梦,
就是能和最喜欢的你,
分享一道算法题,
温习一个编程上易忽视小细节,
品一份书香氤氲,
道最后一句晚安ヾ(◍°∇°◍)ノ゙