8.2 日常分析推理
日常分析:给出日常生活中蕴含逻辑关系的若干条件,需要考生抽丝剥茧找到其内在联系并适当推理,此类问题没有固定的解题方法,真正考察了考生的逻辑思维。
常用方法:代入法、画表法、画图法、赋值法等。
解题入手点:一般可以从确定信息、最大信息入手。
8.2.1 画表法
题干:乙在第一组
(4)己在第二组
(1)甲丙不在同一组,则第一组一定有甲丙中的其中一个
故第一组满了,庚在第二组
实在是优雅
题干:五个人分三个小区&每个小区1~2人
则一定是1 2 2分配
①南山人最少
则南山1人
(②信息少,跳过)③孔 || 邓 || 丁 任一人在东江,都会有北苑只有一人
则该三人一定不在东江
从而剩下的吴&洪 在东江
②吴非北苑,后件为假
则前件为假
从而邓&丁 北苑,孔 南山,故选D
推荐下图方法
8.2.2 画图法
“C摆放在D旁边” CD
“CE间隔着一个”,“CH相邻”,“D在G旁边”,EHCDG
“F在E旁边”,FEHCDG
“F与B的距离比与A的距离更近”,BFEHCDGA
找是否有信息最多的,发现丁出现的最多,三次,则能确定丁的右边是谁
即丁丙
“丁左边不是丙或戊”,则可能搁一个或两个
分别尝试填空看是否满足条件即可
其中注意,把位置数具象化,能节省后续计算量
8.2.3 赋值法
用排除法
王刚纳税额区间不确定,AB都有反例,排除
当王刚纳税额在李明赵贤中间时,不满足C,排除,故选D
按照题意进行赋值,具象大小关系
明2 + 亮4 = 川1 + 海5
川1 + 亮4 < 明2 + 海5 (川<明)
亮4 > 明2 + 川1(开始赋值)
8.2.4 特殊思维
8.2.4.1 等价思维
排除法:(做题时推荐)
只有(1)出现的黄丁,则 黄 = 丁
(2)(3)得 杨 = 贾
(2)中剩下的李肖,有 李 = 肖
回看选项BCD本质上同一个逻辑,不可能同时全队,所以全部排除,故选A
正推法:(平时理解即可,考场上不建议)
(3)杨 || 贾 → 陈,逆否命题:非陈 → 非杨 & 非贾
若非陈,由(2)知李&肖
若非李&非肖,由(2)知杨&贾,从而由(3)知陈
即陈 || 肖 一定为真
每位县领导不连续
书记和副书记不能同一天值班
则书记 = 副书记,排除AC
- 排除法
D:周三张=王,排除,故选B - 正推法
周三周五分别有江和王,周四需要一个县领导值班,则只有张才能满足县领导不连续,故选B
8.2.4.2 极限思维
四人正确率超过一半,发现每个名次出现最多的预测超过三个的只有三个人,低于两个的有一个,加一起刚好超过一半,则只有这些人都正确才能满足超过一半,从而把其他名次的选手去掉,得出第三名
8.2.5 特殊模型
8.2.5.1 不同角度分类模型
分角度画图,知X > X - 2,即借中 > 自英,故选D
最理想的是 男师 < 女非师
C:重复题干,排除
D:女非师和男非师间的大小关系,不能完全影响男女间的大小关系,排除
A:师 < 非师,记男师y,则女非师y+,才能满足y + x < x- + y+
从而从男女角度有 y + x- < x + y+,故选A
8.2.5.2 包含关系模型
不理解,先记下来解法吧
从地方分一共三人(北方2+广东1)
从生意分一共5人(只电2 + 只服3)
当两个集合有包含关系时,人数至少的情况,有5人(max(3,5))
当两个集合没有交集时,人数至多的情况,有8人(3 + 5)
8.2.5.3 多重身份模型
甲考上的不是农业,则甲只能是医科 || 财经
丁是湖北人,同理只能说医科 || 财经
从而乙是江苏是农业,选D
同一个材料的题,从材料中推出的信息可以共用,但由之前题目中的假设条件推出的信息,若无特别说明不能共用
8.2.5.4 数独模型
注意数独类是每行每列不能重复 or 每行每列每斜对角线不能重复,不要想当然
从最大信息处入手,发现敬业出现的最多,对于第四列,二三行不能有敬业,四行已有诚信,则④为敬业,排除ABD,选C
8.2.5.5 冠军模型
甲乙丙三个人参加一个项目,最后只有一个冠军,叫冠军模型
通过一人申请
①甲×
②乙√
③丙×
只有一个预测正确,乙通过则三个预测全对,矛盾,故选D
翻译为谁可能通过,几人预测正确,就要出现几次
只有一所中标→ 冠军模型
①甲 || 乙
②甲 || 乙 || 丁 || 戊 || 己
③甲 || 乙 || 丙 || 丁
只有一人看法正确,则出现两次及以上的一定不中标,即甲乙丁不中标,选C